zoukankan      html  css  js  c++  java
  • 利用GMSSL中ZUC算法实现对序列密码的结构性检测(代码)

    cephes.c

    #include <stdio.h>
    #include <math.h>
    #include "cephes.h"
    
    static const double    rel_error = 1E-12;
    
    double MACHEP = 1.11022302462515654042E-16;        // 2**-53
    double MAXLOG = 7.09782712893383996732224E2;    // log(MAXNUM)
    double MAXNUM = 1.7976931348623158E308;            // 2**1024*(1-MACHEP)
    double PI     = 3.14159265358979323846;            // pi, duh!
    
    static double big = 4.503599627370496e15;
    static double biginv =  2.22044604925031308085e-16;
    
    int sgngam = 0;
    
    double
    cephes_igamc(double a, double x)
    {
        double ans, ax, c, yc, r, t, y, z;
        double pk, pkm1, pkm2, qk, qkm1, qkm2;
    
        if ( (x <= 0) || ( a <= 0) )
            return( 1.0 );
    
        if ( (x < 1.0) || (x < a) )
            return( 1.e0 - cephes_igam(a,x) );
    
        ax = a * log(x) - x - cephes_lgam(a);
    
        if ( ax < -MAXLOG ) {
            printf("igamc: UNDERFLOW
    ");
            return 0.0;
        }
        ax = exp(ax);
    
        /* continued fraction */
        y = 1.0 - a;
        z = x + y + 1.0;
        c = 0.0;
        pkm2 = 1.0;
        qkm2 = x;
        pkm1 = x + 1.0;
        qkm1 = z * x;
        ans = pkm1/qkm1;
    
        do {
            c += 1.0;
            y += 1.0;
            z += 2.0;
            yc = y * c;
            pk = pkm1 * z  -  pkm2 * yc;
            qk = qkm1 * z  -  qkm2 * yc;
            if ( qk != 0 ) {
                r = pk/qk;
                t = fabs( (ans - r)/r );
                ans = r;
            }
            else
                t = 1.0;
            pkm2 = pkm1;
            pkm1 = pk;
            qkm2 = qkm1;
            qkm1 = qk;
            if ( fabs(pk) > big ) {
                pkm2 *= biginv;
                pkm1 *= biginv;
                qkm2 *= biginv;
                qkm1 *= biginv;
            }
        } while ( t > MACHEP );
    
        return ans*ax;
    }
    
    double
    cephes_igam(double a, double x)
    {
        double ans, ax, c, r;
    
        if ( (x <= 0) || ( a <= 0) )
            return 0.0;
    
        if ( (x > 1.0) && (x > a ) )
            return 1.e0 - cephes_igamc(a,x);
    
        /* Compute  x**a * exp(-x) / gamma(a)  */
        ax = a * log(x) - x - cephes_lgam(a);
        if ( ax < -MAXLOG ) {
            printf("igam: UNDERFLOW
    ");
            return 0.0;
        }
        ax = exp(ax);
    
        /* power series */
        r = a;
        c = 1.0;
        ans = 1.0;
    
        do {
            r += 1.0;
            c *= x/r;
            ans += c;
        } while ( c/ans > MACHEP );
    
        return ans * ax/a;
    }
    
    
    /* A[]: Stirling's formula expansion of log gamma
     * B[], C[]: log gamma function between 2 and 3
     */
    static unsigned short A[] = {
        0x6661,0x2733,0x9850,0x3f4a,
        0xe943,0xb580,0x7fbd,0xbf43,
        0x5ebb,0x20dc,0x019f,0x3f4a,
        0xa5a1,0x16b0,0xc16c,0xbf66,
        0x554b,0x5555,0x5555,0x3fb5
    };
    static unsigned short B[] = {
        0x6761,0x8ff3,0x8901,0xc095,
        0xb93e,0x355b,0xf234,0xc0e2,
        0x89e5,0xf890,0x3d73,0xc114,
        0xdb51,0xf994,0xbc82,0xc131,
        0xf20b,0x0219,0x4589,0xc13a,
        0x055e,0x5418,0x0c67,0xc12a
    };
    static unsigned short C[] = {
        /*0x0000,0x0000,0x0000,0x3ff0,*/
        0x12b2,0x1cf3,0xfd0d,0xc075,
        0xd757,0x7b89,0xaa0d,0xc0d0,
        0x4c9b,0xb974,0xeb84,0xc10a,
        0x0043,0x7195,0x6286,0xc131,
        0xf34c,0x892f,0x5255,0xc143,
        0xe14a,0x6a11,0xce4b,0xc13e
    };
    
    #define MAXLGM 2.556348e305
    
    
    /* Logarithm of gamma function */
    double
    cephes_lgam(double x)
    {
        double    p, q, u, w, z;
        int        i;
    
        sgngam = 1;
    
        if ( x < -34.0 ) {
            q = -x;
            w = cephes_lgam(q); /* note this modifies sgngam! */
            p = floor(q);
            if ( p == q ) {
    lgsing:
                goto loverf;
            }
            i = (int)p;
            if ( (i & 1) == 0 )
                sgngam = -1;
            else
                sgngam = 1;
            z = q - p;
            if ( z > 0.5 ) {
                p += 1.0;
                z = p - q;
            }
            z = q * sin( PI * z );
            if ( z == 0.0 )
                goto lgsing;
            /*      z = log(PI) - log( z ) - w;*/
            z = log(PI) - log( z ) - w;
            return z;
        }
    
        if ( x < 13.0 ) {
            z = 1.0;
            p = 0.0;
            u = x;
            while ( u >= 3.0 ) {
                p -= 1.0;
                u = x + p;
                z *= u;
            }
            while ( u < 2.0 ) {
                if ( u == 0.0 )
                    goto lgsing;
                z /= u;
                p += 1.0;
                u = x + p;
            }
            if ( z < 0.0 ) {
                sgngam = -1;
                z = -z;
            }
            else
                sgngam = 1;
            if ( u == 2.0 )
                return( log(z) );
            p -= 2.0;
            x = x + p;
            p = x * cephes_polevl( x, (double *)B, 5 ) / cephes_p1evl( x, (double *)C, 6);
    
            return log(z) + p;
        }
    
        if ( x > MAXLGM ) {
    loverf:
            printf("lgam: OVERFLOW
    ");
    
            return sgngam * MAXNUM;
        }
    
        q = ( x - 0.5 ) * log(x) - x + log( sqrt( 2*PI ) );
        if ( x > 1.0e8 )
            return q;
    
        p = 1.0/(x*x);
        if ( x >= 1000.0 )
            q += ((   7.9365079365079365079365e-4 * p
                    - 2.7777777777777777777778e-3) *p
                    + 0.0833333333333333333333) / x;
        else
            q += cephes_polevl( p, (double *)A, 4 ) / x;
    
        return q;
    }
    
    double
    cephes_polevl(double x, double *coef, int N)
    {
        double    ans;
        int        i;
        double    *p;
    
        p = coef;
        ans = *p++;
        i = N;
    
        do
            ans = ans * x  +  *p++;
        while ( --i );
    
        return ans;
    }
    
    double
    cephes_p1evl(double x, double *coef, int N)
    {
        double    ans;
        double    *p;
        int        i;
    
        p = coef;
        ans = x + *p++;
        i = N-1;
    
        do
            ans = ans * x  + *p++;
        while ( --i );
    
        return ans;
    }

    cephes.h

    #ifndef CEPHES_H_INCLUDED
    #define CEPHES_H_INCLUDED
    
    
    
    #endif // CEPHES_H_INCLUDED
    #ifndef _CEPHES_H_
    #define _CEPHES_H_
    
    //#include "erf.h"
    
    double cephes_igamc(double a, double x);
    double cephes_igam(double a, double x);
    double cephes_lgam(double x);
    double cephes_p1evl(double x, double *coef, int N);
    double cephes_polevl(double x, double *coef, int N);
    double cephes_erf(double x);
    double cephes_erfc(double x);
    double cephes_normal(double x);
    
    #endif /*  _CEPHES_H_  */
    

    main.c

    #include <stdio.h>
    #include <stdlib.h>
    #include <windows.h>
    #include "zuc_spec.h"
    #include <time.h>
    #include "cephes.h"
    unsigned char table[256]=
    {
        0,1,1,2,1,2,2,3,
        1,2,2,3,2,3,3,4,
        1,2,2,3,2,3,3,4,
        2,3,3,4,3,4,4,5,
        1,2,2,3,2,3,3,4,
        2,3,3,4,3,4,4,5,
        2,3,3,4,3,4,4,5,
        3,4,4,5,4,5,5,6,
        1,2,2,3,2,3,3,4,
        2,3,3,4,3,4,4,5,
        2,3,3,4,3,4,4,5,
        3,4,4,5,4,5,5,6,
        2,3,3,4,3,4,4,5,
        3,4,4,5,4,5,5,6,
        3,4,4,5,4,5,5,6,
        4,5,5,6,5,6,6,7,
        1,2,2,3,2,3,3,4,
        2,3,3,4,3,4,4,5,
        2,3,3,4,3,4,4,5,
        3,4,4,5,4,5,5,6,
        2,3,3,4,3,4,4,5,
        3,4,4,5,4,5,5,6,
        3,4,4,5,4,5,5,6,
        4,5,5,6,5,6,6,7,
        2,3,3,4,3,4,4,5,
        3,4,4,5,4,5,5,6,
        3,4,4,5,4,5,5,6,
        4,5,5,6,5,6,6,7,
        3,4,4,5,4,5,5,6,
        4,5,5,6,5,6,6,7,
        4,5,5,6,5,6,6,7,
        5,6,6,7,6,7,7,8
    };
    
    double PI_128[5]= {0.165467,0.230036,0.208994,0.230036,0.165467};
    
    int main()
    {
        srand(time(NULL));
        int i,j,w;
        int v[5]= {0};
        double obs=0;
        double p_value=0;
        u8 key[16],iv[16],D[16];
        u32 keystream[4];
        for(i=0; i<16; i++)
            iv[i]=rand()%256;
        for(i=0; i<1048576; i++)
        {
            for(j=0; j<16; j++)
                key[j]=rand()%256;
            ZUC(key,iv,keystream,4);
            w=0;
            for(j=0; j<16; j++)
            {
                D[j]=(keystream[j/4]>>((3-(j%4))*8))^key[j];
                w+=table[D[j]];
            }
            if(w>=0 && w<=58)
                v[0]++;
            else if(w>=59 && w<=62)
                v[1]++;
            else if(w>=63 && w<=65)
                v[2]++;
            else if(w>=66 && w<=69)
                v[3]++;
            else if(w>=70 && w<=128)
                v[4]++;
        }
    
        for(i=0; i<5; i++)
        {
            printf("
    第%d组的频数为%d,概率为%lf
    ",i+1,v[i],PI_128[i]);
            obs+=((v[i]-1048576*PI_128[i])*(v[i]-1048576*PI_128[i]))/(1048576*PI_128[i]);
        }
         p_value=cephes_igamc(2,obs/2);
        printf("运行结果:
    ");
        printf("卡方分布值为%lf  ",obs);
        printf("p_value:%lf
    ",p_value);
        if(p_value>0.01)
        {
            printf("Pass");
            return 1;
        }
        else
        {
            printf("Fail
    ");
            return 0;
        }
    }
    

    zuc_spec.c

    /* ====================================================================
     * Copyright (c) 2015 - 2018 The GmSSL Project.  All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions
     * are met:
     *
     * 1. Redistributions of source code must retain the above copyright
     *    notice, this list of conditions and the following disclaimer.
     *
     * 2. Redistributions in binary form must reproduce the above copyright
     *    notice, this list of conditions and the following disclaimer in
     *    the documentation and/or other materials provided with the
     *    distribution.
     *
     * 3. All advertising materials mentioning features or use of this
     *    software must display the following acknowledgment:
     *    "This product includes software developed by the GmSSL Project.
     *    (http://gmssl.org/)"
     *
     * 4. The name "GmSSL Project" must not be used to endorse or promote
     *    products derived from this software without prior written
     *    permission. For written permission, please contact
     *    guanzhi1980@gmail.com.
     *
     * 5. Products derived from this software may not be called "GmSSL"
     *    nor may "GmSSL" appear in their names without prior written
     *    permission of the GmSSL Project.
     *
     * 6. Redistributions of any form whatsoever must retain the following
     *    acknowledgment:
     *    "This product includes software developed by the GmSSL Project
     *    (http://gmssl.org/)"
     *
     * THIS SOFTWARE IS PROVIDED BY THE GmSSL PROJECT ``AS IS'' AND ANY
     * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE GmSSL PROJECT OR
     * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     * OF THE POSSIBILITY OF SUCH DAMAGE.
     * ====================================================================
     */
    
    /* code from ZUC 3GPP Specifications, version 1.6
     */
    
    #include <stdio.h>
    #include <stdlib.h>
    #include "zuc_spec.h"
    
    /* the state registers of LFSR */
    u32 LFSR_S0;
    u32 LFSR_S1;
    u32 LFSR_S2;
    u32 LFSR_S3;
    u32 LFSR_S4;
    u32 LFSR_S5;
    u32 LFSR_S6;
    u32 LFSR_S7;
    u32 LFSR_S8;
    u32 LFSR_S9;
    u32 LFSR_S10;
    u32 LFSR_S11;
    u32 LFSR_S12;
    u32 LFSR_S13;
    u32 LFSR_S14;
    u32 LFSR_S15;
    
    /* the registers of F */
    u32 F_R1;
    u32 F_R2;
    
    /* the outputs of BitReorganization */
    u32 BRC_X0;
    u32 BRC_X1;
    u32 BRC_X2;
    u32 BRC_X3;
    
    /* the s-boxes */
    u8 S0[256] = {
    	0x3e,0x72,0x5b,0x47,0xca,0xe0,0x00,0x33,0x04,0xd1,0x54,0x98,0x09,0xb9,0x6d,0xcb,
    	0x7b,0x1b,0xf9,0x32,0xaf,0x9d,0x6a,0xa5,0xb8,0x2d,0xfc,0x1d,0x08,0x53,0x03,0x90,
    	0x4d,0x4e,0x84,0x99,0xe4,0xce,0xd9,0x91,0xdd,0xb6,0x85,0x48,0x8b,0x29,0x6e,0xac,
    	0xcd,0xc1,0xf8,0x1e,0x73,0x43,0x69,0xc6,0xb5,0xbd,0xfd,0x39,0x63,0x20,0xd4,0x38,
    	0x76,0x7d,0xb2,0xa7,0xcf,0xed,0x57,0xc5,0xf3,0x2c,0xbb,0x14,0x21,0x06,0x55,0x9b,
    	0xe3,0xef,0x5e,0x31,0x4f,0x7f,0x5a,0xa4,0x0d,0x82,0x51,0x49,0x5f,0xba,0x58,0x1c,
    	0x4a,0x16,0xd5,0x17,0xa8,0x92,0x24,0x1f,0x8c,0xff,0xd8,0xae,0x2e,0x01,0xd3,0xad,
    	0x3b,0x4b,0xda,0x46,0xeb,0xc9,0xde,0x9a,0x8f,0x87,0xd7,0x3a,0x80,0x6f,0x2f,0xc8,
    	0xb1,0xb4,0x37,0xf7,0x0a,0x22,0x13,0x28,0x7c,0xcc,0x3c,0x89,0xc7,0xc3,0x96,0x56,
    	0x07,0xbf,0x7e,0xf0,0x0b,0x2b,0x97,0x52,0x35,0x41,0x79,0x61,0xa6,0x4c,0x10,0xfe,
    	0xbc,0x26,0x95,0x88,0x8a,0xb0,0xa3,0xfb,0xc0,0x18,0x94,0xf2,0xe1,0xe5,0xe9,0x5d,
    	0xd0,0xdc,0x11,0x66,0x64,0x5c,0xec,0x59,0x42,0x75,0x12,0xf5,0x74,0x9c,0xaa,0x23,
    	0x0e,0x86,0xab,0xbe,0x2a,0x02,0xe7,0x67,0xe6,0x44,0xa2,0x6c,0xc2,0x93,0x9f,0xf1,
    	0xf6,0xfa,0x36,0xd2,0x50,0x68,0x9e,0x62,0x71,0x15,0x3d,0xd6,0x40,0xc4,0xe2,0x0f,
    	0x8e,0x83,0x77,0x6b,0x25,0x05,0x3f,0x0c,0x30,0xea,0x70,0xb7,0xa1,0xe8,0xa9,0x65,
    	0x8d,0x27,0x1a,0xdb,0x81,0xb3,0xa0,0xf4,0x45,0x7a,0x19,0xdf,0xee,0x78,0x34,0x60
    };
    
    u8 S1[256] = {
    	0x55,0xc2,0x63,0x71,0x3b,0xc8,0x47,0x86,0x9f,0x3c,0xda,0x5b,0x29,0xaa,0xfd,0x77,
    	0x8c,0xc5,0x94,0x0c,0xa6,0x1a,0x13,0x00,0xe3,0xa8,0x16,0x72,0x40,0xf9,0xf8,0x42,
    	0x44,0x26,0x68,0x96,0x81,0xd9,0x45,0x3e,0x10,0x76,0xc6,0xa7,0x8b,0x39,0x43,0xe1,
    	0x3a,0xb5,0x56,0x2a,0xc0,0x6d,0xb3,0x05,0x22,0x66,0xbf,0xdc,0x0b,0xfa,0x62,0x48,
    	0xdd,0x20,0x11,0x06,0x36,0xc9,0xc1,0xcf,0xf6,0x27,0x52,0xbb,0x69,0xf5,0xd4,0x87,
    	0x7f,0x84,0x4c,0xd2,0x9c,0x57,0xa4,0xbc,0x4f,0x9a,0xdf,0xfe,0xd6,0x8d,0x7a,0xeb,
    	0x2b,0x53,0xd8,0x5c,0xa1,0x14,0x17,0xfb,0x23,0xd5,0x7d,0x30,0x67,0x73,0x08,0x09,
    	0xee,0xb7,0x70,0x3f,0x61,0xb2,0x19,0x8e,0x4e,0xe5,0x4b,0x93,0x8f,0x5d,0xdb,0xa9,
    	0xad,0xf1,0xae,0x2e,0xcb,0x0d,0xfc,0xf4,0x2d,0x46,0x6e,0x1d,0x97,0xe8,0xd1,0xe9,
    	0x4d,0x37,0xa5,0x75,0x5e,0x83,0x9e,0xab,0x82,0x9d,0xb9,0x1c,0xe0,0xcd,0x49,0x89,
    	0x01,0xb6,0xbd,0x58,0x24,0xa2,0x5f,0x38,0x78,0x99,0x15,0x90,0x50,0xb8,0x95,0xe4,
    	0xd0,0x91,0xc7,0xce,0xed,0x0f,0xb4,0x6f,0xa0,0xcc,0xf0,0x02,0x4a,0x79,0xc3,0xde,
    	0xa3,0xef,0xea,0x51,0xe6,0x6b,0x18,0xec,0x1b,0x2c,0x80,0xf7,0x74,0xe7,0xff,0x21,
    	0x5a,0x6a,0x54,0x1e,0x41,0x31,0x92,0x35,0xc4,0x33,0x07,0x0a,0xba,0x7e,0x0e,0x34,
    	0x88,0xb1,0x98,0x7c,0xf3,0x3d,0x60,0x6c,0x7b,0xca,0xd3,0x1f,0x32,0x65,0x04,0x28,
    	0x64,0xbe,0x85,0x9b,0x2f,0x59,0x8a,0xd7,0xb0,0x25,0xac,0xaf,0x12,0x03,0xe2,0xf2
    };
    
    /* the constants D */
    u32 EK_d[16] = {
    	0x44D7, 0x26BC, 0x626B, 0x135E, 0x5789, 0x35E2, 0x7135, 0x09AF,
    	0x4D78, 0x2F13, 0x6BC4, 0x1AF1, 0x5E26, 0x3C4D, 0x789A, 0x47AC
    };
    
    /* c = a + b mod (2^31 鈥?1) */
    u32 AddM(u32 a, u32 b)
    {
    	u32 c = a + b;
    	return (c & 0x7FFFFFFF) + (c >> 31);
    }
    
    /* LFSR with initialization mode */
    #define MulByPow2(x, k) ((((x) << k) | ((x) >> (31 - k))) & 0x7FFFFFFF)
    
    void LFSRWithInitialisationMode(u32 u)
    {
    	u32 f, v;
    	f = LFSR_S0;
    	v = MulByPow2(LFSR_S0, 8);
    	f = AddM(f, v);
    	v = MulByPow2(LFSR_S4, 20);
    	f = AddM(f, v);
    	v = MulByPow2(LFSR_S10, 21);
    	f = AddM(f, v);
    	v = MulByPow2(LFSR_S13, 17);
    	f = AddM(f, v);
    	v = MulByPow2(LFSR_S15, 15);
    	f = AddM(f, v);
    	f = AddM(f, u);
    	/* update the state */
    	LFSR_S0 = LFSR_S1;
    	LFSR_S1 = LFSR_S2;
    	LFSR_S2 = LFSR_S3;
    	LFSR_S3 = LFSR_S4;
    	LFSR_S4 = LFSR_S5;
    	LFSR_S5 = LFSR_S6;
    	LFSR_S6 = LFSR_S7;
    	LFSR_S7 = LFSR_S8;
    	LFSR_S8 = LFSR_S9;
    	LFSR_S9 = LFSR_S10;
    	LFSR_S10 = LFSR_S11;
    	LFSR_S11 = LFSR_S12;
    	LFSR_S12 = LFSR_S13;
    	LFSR_S13 = LFSR_S14;
    	LFSR_S14 = LFSR_S15;
    	LFSR_S15 = f;
    	if(!LFSR_S15)
        {
            LFSR_S15 = 0x7fffffff;
        }
    }
    
    /* LFSR with work mode */
    void LFSRWithWorkMode(void)
    {
    	u32 f, v;
    	f = LFSR_S0;
    	v = MulByPow2(LFSR_S0, 8);
    	f = AddM(f, v);
    	v = MulByPow2(LFSR_S4, 20);
    	f = AddM(f, v);
    	v = MulByPow2(LFSR_S10, 21);
    	f = AddM(f, v);
    	v = MulByPow2(LFSR_S13, 17);
    	f = AddM(f, v);
    	v = MulByPow2(LFSR_S15, 15);
    	f = AddM(f, v);
    	/* update the state */
    	LFSR_S0 = LFSR_S1;
    	LFSR_S1 = LFSR_S2;
    	LFSR_S2 = LFSR_S3;
    	LFSR_S3 = LFSR_S4;
    	LFSR_S4 = LFSR_S5;
    	LFSR_S5 = LFSR_S6;
    	LFSR_S6 = LFSR_S7;
    	LFSR_S7 = LFSR_S8;
    	LFSR_S8 = LFSR_S9;
    	LFSR_S9 = LFSR_S10;
    	LFSR_S10 = LFSR_S11;
    	LFSR_S11 = LFSR_S12;
    	LFSR_S12 = LFSR_S13;
    	LFSR_S13 = LFSR_S14;
    	LFSR_S14 = LFSR_S15;
    	LFSR_S15 = f;
    	if(!LFSR_S15)
        {
            LFSR_S15 = 0x7fffffff;
        }
    }
    
    /* BitReorganization */
    void BitReorganization(void)
    {
    	BRC_X0 = ((LFSR_S15 & 0x7FFF8000) << 1) | (LFSR_S14 & 0xFFFF);
    	BRC_X1 = ((LFSR_S11 & 0xFFFF) << 16) | (LFSR_S9 >> 15);
    	BRC_X2 = ((LFSR_S7 & 0xFFFF) << 16) | (LFSR_S5 >> 15);
    	BRC_X3 = ((LFSR_S2 & 0xFFFF) << 16) | (LFSR_S0 >> 15);
    }
    
    #define ROT(a, k) (((a) << k) | ((a) >> (32 - k)))
    
    /* L1 */
    u32 L1(u32 X)
    {
    	return (X ^ ROT(X, 2) ^ ROT(X, 10) ^ ROT(X, 18) ^ ROT(X, 24));
    }
    
    /* L2 */
    u32 L2(u32 X)
    {
    	return (X ^ ROT(X, 8) ^ ROT(X, 14) ^ ROT(X, 22) ^ ROT(X, 30));
    }
    
    #define MAKEU32(a, b, c, d) 
    	(((u32)(a) << 24) | ((u32)(b) << 16) | ((u32)(c) << 8) | ((u32)(d)))
    
    /* F */
    u32 F()
    {
    	u32 W, W1, W2, u, v;
    	W = (BRC_X0 ^ F_R1) + F_R2;
    	W1 = F_R1 + BRC_X1;
    	W2 = F_R2 ^ BRC_X2;
    	u = L1((W1 << 16) | (W2 >> 16));
    	v = L2((W2 << 16) | (W1 >> 16));
    	F_R1 = MAKEU32(S0[u >> 24], S1[(u >> 16) & 0xFF],
    			S0[(u >> 8) & 0xFF], S1[u & 0xFF]);
    	F_R2 = MAKEU32(S0[v >> 24], S1[(v >> 16) & 0xFF],
    			S0[(v >> 8) & 0xFF], S1[v & 0xFF]);
    	return W;
    }
    
    #define MAKEU31(a, b, c) (((u32)(a) << 23) | ((u32)(b) << 8) | (u32)(c))
    
    /* initialize */
    void Initialization(u8* k, u8* iv)
    {
    	u32 w, nCount;
    
    	/* expand key */
    	LFSR_S0 = MAKEU31(k[0], EK_d[0], iv[0]);
    	LFSR_S1 = MAKEU31(k[1], EK_d[1], iv[1]);
    	LFSR_S2 = MAKEU31(k[2], EK_d[2], iv[2]);
    	LFSR_S3 = MAKEU31(k[3], EK_d[3], iv[3]);
    	LFSR_S4 = MAKEU31(k[4], EK_d[4], iv[4]);
    	LFSR_S5 = MAKEU31(k[5], EK_d[5], iv[5]);
    	LFSR_S6 = MAKEU31(k[6], EK_d[6], iv[6]);
    	LFSR_S7 = MAKEU31(k[7], EK_d[7], iv[7]);
    	LFSR_S8 = MAKEU31(k[8], EK_d[8], iv[8]);
    	LFSR_S9 = MAKEU31(k[9], EK_d[9], iv[9]);
    	LFSR_S10 = MAKEU31(k[10], EK_d[10], iv[10]);
    	LFSR_S11 = MAKEU31(k[11], EK_d[11], iv[11]);
    	LFSR_S12 = MAKEU31(k[12], EK_d[12], iv[12]);
    	LFSR_S13 = MAKEU31(k[13], EK_d[13], iv[13]);
    	LFSR_S14 = MAKEU31(k[14], EK_d[14], iv[14]);
    	LFSR_S15 = MAKEU31(k[15], EK_d[15], iv[15]);
    
    	/* set F_R1 and F_R2 to zero */
    	F_R1 = 0;
    	F_R2 = 0;
    	nCount = 32;
    	while (nCount > 0)
    	{
    		BitReorganization();
    		w = F();
    		LFSRWithInitialisationMode(w >> 1);
    		nCount --;
    	}
    }
    
    void GenerateKeystream(u32* pKeystream, int KeystreamLen)
    {
    	int i;
    
    	{
    		BitReorganization();
    		F(); /* discard the output of F */
    		LFSRWithWorkMode();
    	}
    
    	for (i = 0; i < KeystreamLen; i ++)
    	{
    		BitReorganization();
    		pKeystream[i] = F() ^ BRC_X3;
    		LFSRWithWorkMode();
    	}
    }
    
    /* The ZUC algorithm, see ref. [3]*/
    void ZUC(u8* k, u8* iv, u32* ks, int len)
    {
    	/* The initialization of ZUC, see page 17 of ref. [3]*/
    	Initialization(k, iv);
    	/* The procedure of generating keystream of ZUC, see page 18 of ref. [3]*/
    	GenerateKeystream(ks, len);
    }
    
    void EEA3(u8* CK, u32 COUNT, u32 BEARER, u32 DIRECTION, u32 LENGTH, u32* M, u32* C)
    {
    	u32 *z, L, i;
    	u8 IV[16];
    
    	L = (LENGTH+31)/32;
    	z = (u32 *) malloc(L*sizeof(u32));
    	IV[0] = (COUNT>>24) & 0xFF;
    	IV[1] = (COUNT>>16) & 0xFF;
    	IV[2] = (COUNT>>8) & 0xFF;
    	IV[3] = COUNT & 0xFF;
    
    	IV[4] = ((BEARER << 3) | ((DIRECTION&1)<<2)) & 0xFC;
    	IV[5] = 0;
    	IV[6] = 0;
    	IV[7] = 0;
    
    	IV[8] = IV[0];
    	IV[9] = IV[1];
    	IV[10] = IV[2];
    	IV[11] = IV[3];
    
    	IV[12] = IV[4];
    	IV[13] = IV[5];
    	IV[14] = IV[6];
    	IV[15] = IV[7];
    
    	ZUC(CK, IV, z, L);
    	for (i=0; i<L; i++) {
    		C[i] = M[i] ^ z[i];
    	}
    	free(z);
    }
    
    u32 GET_WORD(u32 * DATA, u32 i)
    {
    	u32 WORD, ti;
    	ti = i % 32;
    
    	if (ti == 0) {
    		WORD = DATA[i/32];
    	}
    	else {
    		WORD = (DATA[i/32]<<ti) | (DATA[i/32+1]>>(32-ti));
    	}
    	return WORD;
    }
    
    u8 GET_BIT(u32 * DATA, u32 i)
    {
    	return (DATA[i/32] & (1<<(31-(i%32)))) ? 1 : 0;
    }
    
    void EIA3(u8* IK, u32 COUNT, u32 DIRECTION, u32 BEARER, u32 LENGTH, u32* M, u32* MAC)
    {
    	u32 *z, N, L, T, i;
    	u8 IV[16];
    
    	IV[0] = (COUNT>>24) & 0xFF;
    	IV[1] = (COUNT>>16) & 0xFF;
    	IV[2] = (COUNT>>8) & 0xFF;
    	IV[3] = COUNT & 0xFF;
    
    	IV[4] = (BEARER << 3) & 0xF8;
    	IV[5] = IV[6] = IV[7] = 0;
    
    	IV[8] = ((COUNT>>24) & 0xFF) ^ ((DIRECTION&1)<<7);
    	IV[9] = (COUNT>>16) & 0xFF;
    	IV[10] = (COUNT>>8) & 0xFF;
    	IV[11] = COUNT & 0xFF;
    
    	IV[12] = IV[4];
    	IV[13] = IV[5];
    	IV[14] = IV[6] ^ ((DIRECTION&1)<<7);
    	IV[15] = IV[7];
    
    	N = LENGTH + 64;
    	L = (N + 31) / 32;
    	z = (u32 *) malloc(L*sizeof(u32));
    	ZUC(IK, IV, z, L);
    
    	T = 0;
    	for (i = 0; i < LENGTH; i++) {
    		if (GET_BIT(M,i)) {
    			T ^= GET_WORD(z,i);
    		}
    	}
    	T ^= GET_WORD(z,LENGTH);
    
    	*MAC = T ^ z[L-1];
    	free(z);
    }
    

    zuc_spec.h

    /* ====================================================================
     * Copyright (c) 2015 - 2016 The GmSSL Project.  All rights reserved.
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions
     * are met:
     *
     * 1. Redistributions of source code must retain the above copyright
     *    notice, this list of conditions and the following disclaimer.
     *
     * 2. Redistributions in binary form must reproduce the above copyright
     *    notice, this list of conditions and the following disclaimer in
     *    the documentation and/or other materials provided with the
     *    distribution.
     *
     * 3. All advertising materials mentioning features or use of this
     *    software must display the following acknowledgment:
     *    "This product includes software developed by the GmSSL Project.
     *    (http://gmssl.org/)"
     *
     * 4. The name "GmSSL Project" must not be used to endorse or promote
     *    products derived from this software without prior written
     *    permission. For written permission, please contact
     *    guanzhi1980@gmail.com.
     *
     * 5. Products derived from this software may not be called "GmSSL"
     *    nor may "GmSSL" appear in their names without prior written
     *    permission of the GmSSL Project.
     *
     * 6. Redistributions of any form whatsoever must retain the following
     *    acknowledgment:
     *    "This product includes software developed by the GmSSL Project
     *    (http://gmssl.org/)"
     *
     * THIS SOFTWARE IS PROVIDED BY THE GmSSL PROJECT ``AS IS'' AND ANY
     * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE GmSSL PROJECT OR
     * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     * OF THE POSSIBILITY OF SUCH DAMAGE.
     * ====================================================================
     */
    /*
     * code from ZUC 3GPP Specifications, version 1.6
     */
    
    #ifndef HEADER_ZUC_SPEC_H
    #define HEADER_ZUC_SPEC_H
    
    typedef unsigned char u8;
    typedef unsigned int u32;
    
    #ifdef __cplusplus
    extern "C" {
    #endif
    
    void Initialization(u8* k, u8* iv);
    void GenerateKeystream(u32* pKeystream, int KeystreamLen);
    void ZUC(u8* k, u8* iv, u32* ks, int len);
    void EEA3(u8* CK, u32 COUNT, u32 BEARER, u32 DIRECTION, u32 LENGTH, u32* M, u32* C);
    void EIA3(u8* IK, u32 COUNT, u32 DIRECTION, u32 BEARER, u32 LENGTH, u32* M, u32* MAC);
    
    #ifdef __cplusplus
    }
    #endif
    #endif
    

      

  • 相关阅读:
    ps基础磨皮(混入了奇怪的博客~)
    spring boot配置ssl
    Chrome自动翻译失效的解决办法
    小红书数美滑块验证码
    使用DataLoader报错AttributeError: 'int' object has no attribute 'numel'
    glidedsky-爬虫-验证码-1
    glidedsky-爬虫-雪碧图-2
    glidedsky-爬虫-雪碧图-1
    glidedsky-爬虫-CSS反爬
    glidedsky-爬虫-字体反爬-1
  • 原文地址:https://www.cnblogs.com/liang20181208/p/14782802.html
Copyright © 2011-2022 走看看