zoukankan      html  css  js  c++  java
  • 04-1. Root of AVL Tree (PAT)

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

        
        

    Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (<=20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print ythe root of the resulting AVL tree in one line.

    Sample Input 1:
    5
    88 70 61 96 120
    
    Sample Output 1:
    70
    
    Sample Input 2:
    7
    88 70 61 96 120 90 65
    
    Sample Output 2:
    88

    题意:将输入调整为平衡二叉树(AVL),输出根结点元素
    解题思路:判断插入结点对现有结点的平衡因子的影响,进而进行LL,LR,RL,RR旋转
    假设三个结点连接关系为A->B->C,C为新插入结点并使得A的平衡因子==2
    若C在A的左孩子的左子树上,则对A与B进行LL旋转
    若C在A的左孩子的右子树上,则对A,B,C进行LR旋转,可分解为首先对B与C进行RR旋转,再对A与C进行LL旋转
    若C在A的右孩子的右子树上,则对A与B进行RR旋转
    若C在A的右孩子的左子树上,则对A,B,C进行RL旋转,可分解为首先对B与C进行LL旋转,再对A与C进行RR旋转

    #include <iostream>
    #include <string>
    
    typedef struct AVLTreeNode{
        int Data;
        AVLTreeNode *Left;
        AVLTreeNode *Right;
        int Height;
    }nAVLTree ,*pAVLTree;
    
    pAVLTree AVLInsertion( int nodeValue, pAVLTree pAvl );
    int GetALVHeight( pAVLTree );
    pAVLTree SingleLeftRotation( pAVLTree );
    pAVLTree DoubleLeftRotation( pAVLTree );
    pAVLTree SingleRightRotation( pAVLTree );
    pAVLTree DoubleRightRotation( pAVLTree );
    int Max( int hight1, int hight2 );
    using namespace std;
    
    int main()
    {
        int num;
        int i;
        int value;
        pAVLTree pAvl;
        pAvl = NULL;
        cin >> num;
        for ( i = 0; i < num; i++ )
        {
            cin >> value;
            pAvl = AVLInsertion( value, pAvl);
        }
        cout << pAvl->Data;
    }
    
    pAVLTree AVLInsertion( int nodeValue, pAVLTree pAvl )
    {
        if ( pAvl == NULL )
        {
            pAvl = ( pAVLTree )malloc( sizeof( nAVLTree ) );
            pAvl->Left = pAvl->Right = NULL;
            pAvl->Data = nodeValue;
            pAvl->Height = 0;
        }
        else if ( nodeValue < pAvl->Data )
        {
            pAvl->Left = AVLInsertion( nodeValue, pAvl->Left );
            if ( GetALVHeight( pAvl->Left ) - GetALVHeight( pAvl->Right ) == 2 )
            {
                if ( nodeValue < pAvl->Left->Data )
                {
                    pAvl = SingleLeftRotation( pAvl );
                }
                else
                {
                    pAvl = DoubleLeftRotation( pAvl );
                }
            }
        }
        else if ( nodeValue > pAvl->Data )
        {
            pAvl->Right = AVLInsertion( nodeValue, pAvl->Right );
            if ( GetALVHeight( pAvl->Right ) - GetALVHeight( pAvl->Left ) == 2 )
            {
                if ( nodeValue > pAvl->Right->Data )
                {
                    pAvl = SingleRightRotation( pAvl );
                }
                else
                {
                    pAvl = DoubleRightRotation( pAvl );
                }
            }
        }
        pAvl->Height = Max( GetALVHeight( pAvl->Left ), GetALVHeight( pAvl->Right ) ) + 1;
        return pAvl;
    }
    
    pAVLTree SingleLeftRotation( pAVLTree A )
    {
        pAVLTree B = A->Left;
        A->Left = B->Right;
        B->Right = A;
        A->Height = Max( GetALVHeight( A->Left ), GetALVHeight( A->Right ) ) + 1;
        B->Height = Max( GetALVHeight( B->Left ), A->Height ) + 1;
        return B;
    }
    
    pAVLTree DoubleLeftRotation( pAVLTree A )
    {
        A->Left = SingleRightRotation( A->Left );
        return SingleLeftRotation( A );
    }
    
    pAVLTree SingleRightRotation( pAVLTree A )
    {
        pAVLTree B = A->Right;
        A->Right = B->Left;
        B->Left = A;
        A->Height = Max( GetALVHeight( A->Left ), GetALVHeight( A->Right ) ) + 1;
        B->Height = Max( GetALVHeight( B->Right ), A->Height ) + 1;
        return B;
    }
    
    pAVLTree DoubleRightRotation( pAVLTree A )
    {
        A->Right = SingleLeftRotation( A->Right );
        return SingleRightRotation( A );
    }
    
    int GetALVHeight( pAVLTree pAvl)
    {
        if ( pAvl == NULL )
        {
            return 0;
        }
        else
        {
            return pAvl->Height;
        }
    }
    
    int Max( int hight1, int hight2 )
    {
        return hight1 > hight2 ? hight1 : hight2;
    }
  • 相关阅读:
    Java之旅_高级教程_数据结构
    Java之旅_高级教程_多线程编程
    Java之旅_高级教程_URL处理
    Java之旅_高级教程_网络编程
    Java问题汇总
    java之旅_高级教程_java泛型
    Chrome中安装Firebug插件
    Selenium+Python环境搭建
    批处理DOS基础命令
    Appium-两个小报错
  • 原文地址:https://www.cnblogs.com/liangchao/p/4286262.html
Copyright © 2011-2022 走看看