POJ3176
题意
输入一个n层的三角形,第i层有i个数,求从第1层到第n层的所有路线中,权值之和最大的路线。
规定:第i层的某个数只能连线走到第i+1层中与它位置相邻的两个数中的一个。
思路
最显而易见的是使用二维数组动态规划计算。
比如dp[i][j]表示以第i行j列的位置作为终点的路线的最大权值。 (注意区分初始化时的意义)
那么dp[i][j]的最大值取决于dp[i-1][j-1]和dp[i-1][j],从这两者之间筛选出最大值,加到dp[i][j]上,即为dp[i][j]的最大权值。
最后只要比较第n行中所有位置的权值dp[n][j],最大的一个即为所求。
但其实用一维数组也能够完成要求,具体请看我的代码。
代码
Source Code
Problem: 3176 User: liangrx06
Memory: 248K Time: 79MS
Language: C++ Result: Accepted
Source Code
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 350;
int main(void)
{
int n;
int a[N], dp[N];
cin >> n;
dp[0] = 0;
for (int i = 0; i < n; i ++) {
for (int j = 0; j <= i; j ++) {
scanf("%d", &a[j]);
}
for (int j = i; j >= 0; j --) {
if (j == 0)
dp[j] = dp[j] + a[j];
else if (j == i)
dp[j] = dp[j-1] + a[j];
else
dp[j] = max(dp[j], dp[j-1]) + a[j];
}
}
int sum = 0;
for (int i = 0; i < n; i ++)
sum = max(dp[i], sum);
printf("%d
", sum);
return 0;
}
POJ2229
题意
求把一个整数分解为2的幂的和共有几种方案。
例如整数7的分解有6种方案:
7=1+1+1+1+1+1+1
7=1+1+1+1+1+2
7=1+1+1+2+2
7=1+1+1+4
7=1+2+2+2
7=1+2+4
思路
这种题通常都是用递归来解的。假设n对应的分解方案数为f(n)首先按照n为奇数和偶数的情况分别分析:
n为奇数时,分解式中一定含有1,去掉这个1,剩下的分解式的和为n-1,也就是说,f(n) = f(n-1);
n为偶数时,分解式中若含有1,方案数为f(n-1),若不含有1,将分解式中的数都除以2,其和对应于n/2,也就是说方案数为f(n/2),所以f(n) = f(n-1)+f(n/2)。
如此由n=1的初始条件递归求解即可,也可以说是动态规划。
但是这个题我WA了三次,后来发现这个题的答案会超出long long的表示范围,需要取余,改了好几次才AC。所以一定要注意答案的范围。
代码
Source Code
Problem: 2229 User: liangrx06
Memory: 4136K Time: 125MS
Language: C++ Result: Accepted
Source Code
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int N = 1000000;
int main(void)
{
int n;
int a[N+1];
cin >> n;
a[0] = 1;
for (int i = 1; i <= n; i ++) {
if (i&1)
a[i] = a[i-1];
else
a[i] = a[i/2] + a[i-1];
a[i] %= 1000000000;
}
printf("%lld
", a[n]);
return 0;
}
POJ2385
题意
2棵苹果树在T分钟内随机由某一棵苹果树掉下一个苹果,奶牛站在树#1下等着吃苹果,它最多愿意移动W次,问它最多能吃到几个苹果。
思路
动态规划题。状态空间主要决定于W,以dp[i][j][k]表示第i+1分的时候经过j次移动站在了k+1树下能吃到的最大苹果数,然后搜索所有的ijk组合,更新dp。
实际上我使用的数组是dp[i&1][j][k],用i&1的目的是降低空间复杂度,dp数组大小降为原来的2/T。
代码
Source Code
Problem: 2385 User: liangrx06
Memory: 248K Time: 16MS
Language: C++ Result: Accepted
Source Code
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int T = 1000;
const int W = 30;
int main(void)
{
int t, w;
int a[T+1];
int dp[2][W+1][2];
cin >> t >> w;
memset(dp, 0, sizeof(dp));
for (int i = 1; i <= t; i ++) {
scanf("%d", &a[i]);
a[i] --;
for (int j = 0; j <= w; j ++) {
dp[i&1][j][a[i]] = dp[(i-1)&1][j][a[i]] + 1;
dp[i&1][j][(a[i]+1)&1] = dp[(i-1)&1][j][(a[i]+1)&1];
if (j > 0) {
dp[i&1][j][a[i]] = max(dp[i&1][j][a[i]],
dp[(i-1)&1][j-1][(a[i]+1)&1] + 1);
dp[i&1][j][(a[i]+1)&1] = max(dp[i&1][j][(a[i]+1)&1],
dp[(i-1)&1][j-1][a[i]]);
}
}
}
int res = 0;
for (int j = 0; j <= W; j ++) {
res = max(res, dp[t&1][j][0]);
res = max(res, dp[t&1][j][1]);
}
printf("%d
", res);
return 0;
}
POJ3616
题意
奶牛Bessie在0~N时间段产奶。农夫约翰有M个时间段可以挤奶,时间段f,t内Bessie能挤到的牛奶量e。奶牛产奶后需要休息R小时才能继续下一次产奶,求Bessie最大的挤奶量。
思路
定义dp[i]表示第i个时间段(注意此处的第i个时间段不等同于第i次)挤奶能够得到的最大值,拆开来说,就是前面 i – 1个时间段任取0到i – 1个时间段挤奶,然后加上这个时间段(i)的产奶量之和。
dp[i]满足如下递推关系:
第i个时间段挤奶的最大值 = 前 i – 1 个时间段挤奶的最大值的最大值 + 第i次产奶量。
代码
Source Code
Problem: 3616 User: liangrx06
Memory: 184K Time: 0MS
Language: C++ Result: Accepted
Source Code
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int M = 1000;
struct Time {
int f, e, v;
};
bool cmp(const Time& a, const Time& b)
{
return a.f < b.f;
}
int main(void)
{
int n, m, r;
Time t[M];
int dp[M+1];
int ans = 0;
scanf("%d%d%d", &n, &m, &r);
for (int i = 0; i < m; i ++)
scanf("%d%d%d", &t[i].f, &t[i].e, &t[i].v);
sort(t, t+m, cmp);
memset(dp, 0, sizeof(dp));
for (int i = 0; i < m; i ++) {
dp[i] = t[i].v;
for (int j = 0; j < i; j ++) {
if (t[i].f >= t[j].e + r)
dp[i] = max(dp[i], dp[j] + t[i].v);
}
ans = max(ans, dp[i]);
}
printf("%d
", ans);
return 0;
}
POJ3280
题意
有一个由n个小写字母组成的,长度为m的字符串,可以对其通过增加字符或者删除字符来使其变成回文。而增加或者删除字符都有一个花费,求解使该字符串变成回文的最小花费。
思路
动态规划。dp[i][j]表示串str[i~j]变成回文的最小代价,故状态转移方程为:
当str[i] == str[j]时 dp[i][j] = dp[i+1][j-1];
当str[i] != str[j]时 dp[i][j] = min( dp[i+1][j]+add[str[i]-'a'], dp[i][j-1]+add[str[j]-'a'], dp[i+1][j]+del[str[i]-'a'], dp[i][j-1]+del[str[j]-'a']);
更详细的分析(以下内容转自小鱼的博客):
其实dp很难逃出3种思路:
1、一维线性dp:每次考虑i时,选择最优子问题要么在i-1,要么在1...i-1里;
2、二维线性dp:考虑(i,j)子问题时,选择最优子问题要么在(i+1,j)、(i,j-1),要么在i<= k <=j,在k里;
3、树形dp:考虑i节点最优时,选择子节点最优,一般融合了01背包dp的双重dp。
上面3种模式也是我在做题后才发现的。
这个dp题其实就可以仿照第2中思路。
假设一个字符串Xx....yY;对于求这个字符串怎么求呢?
分4种情况讨论:
1、去掉X,取x....yY回文;
2、去掉Y,取Xx....y回文;
3、在左边加上X,取Xx....yYX回文;
4、在右边加上Y,取YXx....y回文。
至于去掉X、Y肯定没有第1、2中情况合算;加上X、Y肯定没有第3、4中情况合算。
因此令dp[i][j]为i...j要变成回文字符串的最小代价。
方程:
dp[i][j] = min{ dp[i+1][j] + {去掉X的代价},dp[i+1][j] + {加上X的代价},dp[i][j-1]+ {去掉Y的代价},dp[i][j-1] +{加上Y的代价}};
其实分析发现,对于X而言,只要去 去掉 和加上 X 最小代价就行(因为前面dp串一样),Y同理。
因此最后得出:
dp[i][j] = min{ dp[i+1][j] +min{ {去掉X的代价}, {加上X的代价}},dp[i][j-1]+min{ {去掉Y的代价}, {加上Y的代价}}};
dp时候还有些注意事项:
比如当X和Y字符一样时,则在dp时必须先为x...y的最小代价。
代码
Source Code
Problem: 3280 User: liangrx06
Memory: 15852K Time: 172MS
Language: C++ Result: Accepted
Source Code
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int M = 2000;
int dp[M+1][M+1];
int main(void)
{
int i, j, k, n, m;
char s[M+1];
int add[26], del[26];
scanf("%d%d%s", &n, &m, s);
for (i = 0; i < n; i ++) {
char c[2];
scanf("%s", c);
scanf("%d", &add[c[0]-'a']);
scanf("%d", &del[c[0]-'a']);
}
memset(dp, 0, sizeof(dp));
for (k = 0; k < m; k ++) {
for (i = 0; i < m-k; i ++) {
j = i + k;
if (s[i] == s[j])
dp[i][j] = dp[i+1][j-1];
else {
dp[i][j] = min(dp[i+1][j] + add[s[i]-'a'], dp[i+1][j] + del[s[i]-'a']);
dp[i][j] = min(dp[i][j], dp[i][j-1] + add[s[j]-'a']);
dp[i][j] = min(dp[i][j], dp[i][j-1] + del[s[j]-'a']);
}
}
}
printf("%d
", dp[0][m-1]);
return 0;
}