zoukankan      html  css  js  c++  java
  • 《挑战程序设计竞赛》2.3 动态规划-基础 POJ3176 2229 2385 3616 3280

    POJ3176

    Cow Bowling

    题意

    输入一个n层的三角形,第i层有i个数,求从第1层到第n层的所有路线中,权值之和最大的路线。
    规定:第i层的某个数只能连线走到第i+1层中与它位置相邻的两个数中的一个。

    思路

    最显而易见的是使用二维数组动态规划计算。
    比如dp[i][j]表示以第i行j列的位置作为终点的路线的最大权值。 (注意区分初始化时的意义)
    那么dp[i][j]的最大值取决于dp[i-1][j-1]和dp[i-1][j],从这两者之间筛选出最大值,加到dp[i][j]上,即为dp[i][j]的最大权值。
    最后只要比较第n行中所有位置的权值dp[n][j],最大的一个即为所求。
    但其实用一维数组也能够完成要求,具体请看我的代码。

    代码

    Source Code
    
    Problem: 3176       User: liangrx06
    Memory: 248K        Time: 79MS
    Language: C++       Result: Accepted
    Source Code
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    
    const int N = 350;
    
    int main(void)
    {
        int n;
        int a[N], dp[N];
    
        cin >> n;
        dp[0] = 0;
        for (int i = 0; i < n; i ++) {
            for (int j = 0; j <= i; j ++) {
                scanf("%d", &a[j]);
            }
            for (int j = i; j >= 0; j --) {
                if (j == 0)
                    dp[j] = dp[j] + a[j];
                else if (j == i)
                    dp[j] = dp[j-1] + a[j];
                else
                    dp[j] = max(dp[j], dp[j-1]) + a[j];
            }
        }
    
        int sum = 0;
        for (int i = 0; i < n; i ++)
            sum = max(dp[i], sum);
        printf("%d
    ", sum);
    
        return 0;
    }

    POJ2229

    Sumsets

    题意

    求把一个整数分解为2的幂的和共有几种方案。
    例如整数7的分解有6种方案:
    7=1+1+1+1+1+1+1
    7=1+1+1+1+1+2
    7=1+1+1+2+2
    7=1+1+1+4
    7=1+2+2+2
    7=1+2+4

    思路

    这种题通常都是用递归来解的。假设n对应的分解方案数为f(n)首先按照n为奇数和偶数的情况分别分析:
    n为奇数时,分解式中一定含有1,去掉这个1,剩下的分解式的和为n-1,也就是说,f(n) = f(n-1);
    n为偶数时,分解式中若含有1,方案数为f(n-1),若不含有1,将分解式中的数都除以2,其和对应于n/2,也就是说方案数为f(n/2),所以f(n) = f(n-1)+f(n/2)。
    如此由n=1的初始条件递归求解即可,也可以说是动态规划。
    但是这个题我WA了三次,后来发现这个题的答案会超出long long的表示范围,需要取余,改了好几次才AC。所以一定要注意答案的范围。

    代码

    Source Code
    
    Problem: 2229       User: liangrx06
    Memory: 4136K       Time: 125MS
    Language: C++       Result: Accepted
    Source Code
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    
    const int N = 1000000;
    
    int main(void)
    {
        int n;
        int a[N+1];
    
        cin >> n;
        a[0] = 1;
        for (int i = 1; i <= n; i ++) {
            if (i&1)
                a[i] = a[i-1];
            else
                a[i] = a[i/2] + a[i-1];
            a[i] %= 1000000000;
        }
        printf("%lld
    ", a[n]);
    
        return 0;
    }

    POJ2385

    Apple Catching

    题意

    2棵苹果树在T分钟内随机由某一棵苹果树掉下一个苹果,奶牛站在树#1下等着吃苹果,它最多愿意移动W次,问它最多能吃到几个苹果。

    思路

    动态规划题。状态空间主要决定于W,以dp[i][j][k]表示第i+1分的时候经过j次移动站在了k+1树下能吃到的最大苹果数,然后搜索所有的ijk组合,更新dp。
    实际上我使用的数组是dp[i&1][j][k],用i&1的目的是降低空间复杂度,dp数组大小降为原来的2/T。

    代码

    Source Code
    
    Problem: 2385       User: liangrx06
    Memory: 248K        Time: 16MS
    Language: C++       Result: Accepted
    Source Code
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    const int T = 1000;
    const int W = 30;
    
    int main(void)
    {
        int t, w;
        int a[T+1];
        int dp[2][W+1][2];
    
        cin >> t >> w;
        memset(dp, 0, sizeof(dp));
        for (int i = 1; i <= t; i ++) {
            scanf("%d", &a[i]);
            a[i] --;
            for (int j = 0; j <= w; j ++) {
                dp[i&1][j][a[i]] = dp[(i-1)&1][j][a[i]] + 1;
                dp[i&1][j][(a[i]+1)&1] = dp[(i-1)&1][j][(a[i]+1)&1];
                if (j > 0) {
                    dp[i&1][j][a[i]] = max(dp[i&1][j][a[i]],
                            dp[(i-1)&1][j-1][(a[i]+1)&1] + 1);
                    dp[i&1][j][(a[i]+1)&1] = max(dp[i&1][j][(a[i]+1)&1],
                            dp[(i-1)&1][j-1][a[i]]);
                }
            }
        }
        int res = 0;
        for (int j = 0; j <= W; j ++) {
            res = max(res, dp[t&1][j][0]);
            res = max(res, dp[t&1][j][1]);
        }
        printf("%d
    ", res);
    
        return 0;
    }

    POJ3616

    Milking Time

    题意

    奶牛Bessie在0~N时间段产奶。农夫约翰有M个时间段可以挤奶,时间段f,t内Bessie能挤到的牛奶量e。奶牛产奶后需要休息R小时才能继续下一次产奶,求Bessie最大的挤奶量。

    思路

    定义dp[i]表示第i个时间段(注意此处的第i个时间段不等同于第i次)挤奶能够得到的最大值,拆开来说,就是前面 i – 1个时间段任取0到i – 1个时间段挤奶,然后加上这个时间段(i)的产奶量之和。
    dp[i]满足如下递推关系:
    第i个时间段挤奶的最大值 = 前 i – 1 个时间段挤奶的最大值的最大值 + 第i次产奶量。

    代码

    Source Code
    
    Problem: 3616       User: liangrx06
    Memory: 184K        Time: 0MS
    Language: C++       Result: Accepted
    Source Code
    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    using namespace std;
    
    const int M = 1000;
    
    struct Time {
        int f, e, v;
    };
    
    bool cmp(const Time& a, const Time& b)
    {
        return a.f < b.f;
    }
    
    int main(void)
    {
        int n, m, r;
        Time t[M];
        int dp[M+1];
        int ans = 0;
    
        scanf("%d%d%d", &n, &m, &r);
        for (int i = 0; i < m; i ++)
            scanf("%d%d%d", &t[i].f, &t[i].e, &t[i].v);
        sort(t, t+m, cmp);
    
        memset(dp, 0, sizeof(dp));
        for (int i = 0; i < m; i ++) {
            dp[i] = t[i].v;
            for (int j = 0; j < i; j ++) {
                if (t[i].f >= t[j].e + r)
                    dp[i] = max(dp[i], dp[j] + t[i].v);
            }
            ans = max(ans, dp[i]);
        }
        printf("%d
    ", ans);
    
        return 0;
    }

    POJ3280

    Cheapest Palindrome

    题意

    有一个由n个小写字母组成的,长度为m的字符串,可以对其通过增加字符或者删除字符来使其变成回文。而增加或者删除字符都有一个花费,求解使该字符串变成回文的最小花费。
    

    思路

    动态规划。dp[i][j]表示串str[i~j]变成回文的最小代价,故状态转移方程为:
    当str[i] == str[j]时 dp[i][j] = dp[i+1][j-1];
    当str[i] != str[j]时 dp[i][j] = min( dp[i+1][j]+add[str[i]-'a'], dp[i][j-1]+add[str[j]-'a'], dp[i+1][j]+del[str[i]-'a'], dp[i][j-1]+del[str[j]-'a']);
    

    更详细的分析(以下内容转自小鱼的博客):

    其实dp很难逃出3种思路:
    1、一维线性dp:每次考虑i时,选择最优子问题要么在i-1,要么在1...i-1里;
    2、二维线性dp:考虑(i,j)子问题时,选择最优子问题要么在(i+1,j)、(i,j-1),要么在i<= k <=j,在k里;
    3、树形dp:考虑i节点最优时,选择子节点最优,一般融合了01背包dp的双重dp。
    上面3种模式也是我在做题后才发现的。
    这个dp题其实就可以仿照第2中思路。
    假设一个字符串Xx....yY;对于求这个字符串怎么求呢?
    分4种情况讨论:
    1、去掉X,取x....yY回文;
    2、去掉Y,取Xx....y回文;
    3、在左边加上X,取Xx....yYX回文;
    4、在右边加上Y,取YXx....y回文。
    至于去掉X、Y肯定没有第1、2中情况合算;加上X、Y肯定没有第3、4中情况合算。
    因此令dp[i][j]为i...j要变成回文字符串的最小代价。
    方程:
    dp[i][j] = min{  dp[i+1][j] + {去掉X的代价},dp[i+1][j] + {加上X的代价},dp[i][j-1]+ {去掉Y的代价},dp[i][j-1] +{加上Y的代价}};
    其实分析发现,对于X而言,只要去 去掉 和加上 X 最小代价就行(因为前面dp串一样),Y同理。
    因此最后得出:
    dp[i][j] = min{  dp[i+1][j] +min{ {去掉X的代价}, {加上X的代价}},dp[i][j-1]+min{ {去掉Y的代价}, {加上Y的代价}}};
    dp时候还有些注意事项:
    比如当X和Y字符一样时,则在dp时必须先为x...y的最小代价。
    

    代码

    Source Code
    
    Problem: 3280       User: liangrx06
    Memory: 15852K      Time: 172MS
    Language: C++       Result: Accepted
    Source Code
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    
    const int M = 2000;
    
    int dp[M+1][M+1];
    
    int main(void)
    {
        int i, j, k, n, m;
        char s[M+1];
        int add[26], del[26];
    
        scanf("%d%d%s", &n, &m, s);
        for (i = 0; i < n; i ++) {
            char c[2];
            scanf("%s", c);
            scanf("%d", &add[c[0]-'a']);
            scanf("%d", &del[c[0]-'a']);
        }
    
        memset(dp, 0, sizeof(dp));
        for (k = 0; k < m; k ++) {
            for (i = 0; i < m-k; i ++) {
                j = i + k;
                if (s[i] == s[j])
                    dp[i][j] = dp[i+1][j-1];
                else {
                    dp[i][j] = min(dp[i+1][j] + add[s[i]-'a'], dp[i+1][j] + del[s[i]-'a']);
                    dp[i][j] = min(dp[i][j], dp[i][j-1] + add[s[j]-'a']);
                    dp[i][j] = min(dp[i][j], dp[i][j-1] + del[s[j]-'a']);
                }
            }
        }
        printf("%d
    ", dp[0][m-1]);
    
        return 0;
    }
  • 相关阅读:
    setContentView和inflate区别
    eclipse中自动添加注释(作者,时间)
    ImageLoader must be init with configuration before using
    repo用法详解
    SQL 中的N'xx'的作用
    DataRow复制一行到另一个DataTable
    MS SQL SERVER搜索某个表的主键所在的列名
    Win2008 Server R2个人PC化设置
    C# DataTable的詳細用法
    如何解决arcmap中的反走样问题。
  • 原文地址:https://www.cnblogs.com/liangrx06/p/5083766.html
Copyright © 2011-2022 走看看