zoukankan      html  css  js  c++  java
  • 九度OJ 1323:World Cup Betting(世界杯) (基础题)

    时间限制:1 秒

    内存限制:32 兆

    特殊判题:

    提交:492

    解决:219

    题目描述:

    With the 2010 FIFA World Cup running, football fans the world over were becoming increasingly excited as the best players from the best teams doing battles for the World Cup trophy in South Africa. Similarly, football betting fans were putting their money where their mouths were, by laying all manner of World Cup bets.

    Chinese Football Lottery provided a "Triple Winning" game. The rule of winning was simple: first select any three of the games. Then for each selected game, bet on one of the three possible results -- namely W for win, T for tie, and L for lose. There was an odd assigned to each result. The winner's odd would be the product of the three odds times 65%.

    For example, 3 games' odds are given as the following:

     W    T    L
    1.1  2.5  1.7
    1.2  3.0  1.6
    4.1  1.2  1.1
    

    To obtain the maximum profit, one must buy W for the 3rd game, T for the 2nd game, and T for the 1st game. If each bet takes 2 yuans, then the maximum profit would be (4.1*3.0*2.5*65%-1)*2 = 37.98 yuans (accurate up to 2 decimal places).

    输入:

    Each input file contains one test case. Each case contains the betting information of 3 games. Each game occupies a line with three distinct odds corresponding to W, T and L.

    输出:

    For each test case, print in one line the best bet of each game, and the maximum profit accurate up to 2 decimal places. The characters and the number must be separated by one space.

    样例输入:
    1.1 2.5 1.7
    1.2 3.0 1.6
    4.1 1.2 1.1
    样例输出:
    T T W 37.98

    思路:

    其实就是一个数学算式。


    代码:

    #include <stdio.h>
    #include <string.h>
     
    #define N 3
     
    char mtoc(int m)
    {
        if (m == 0)
            return 'W';
        if (m == 1)
            return 'T';
        return 'L';
    }
     
    int main(void)
    {
        int n, i, j;
        double a[N][N];
        int max[N];
     
        n = N;
        while (scanf("%lf", &a[0][0]) != EOF)
        {
            memset(max, 0, sizeof(max));
            for(i=0; i<n; i++)
            {
                for(j=0; j<n; j++)
                {
                    if (i == 0 && j == 0)
                        continue;
                    scanf("%lf", &a[i][j]);
                    if (a[i][j] > a[i][max[i]])
                        max[i] = j;
                }
            }
     
            double res = (a[0][max[0]]*a[1][max[1]]*a[2][max[2]]*0.65-1)*2;
            printf("%c %c %c %.2lf
    ", mtoc(max[0]),
                    mtoc(max[1]), mtoc(max[2]), res);
        }
     
        return 0;
    }
    /**************************************************************
        Problem: 1323
        User: liangrx06
        Language: C
        Result: Accepted
        Time:0 ms
        Memory:912 kb
    ****************************************************************/


    编程算法爱好者。
  • 相关阅读:
    机器学习经典聚类算法 —— k-均值算法(附python实现代码及数据集)
    机器学习经典分类算法 —— k-近邻算法(附python实现代码及数据集)
    linux进程间通信之消息队列
    Linux下的权限掩码umask
    AVL树的插入操作(旋转)图解
    二叉搜索树的插入与删除图解
    MySQL密码忘记之解决方法
    C++之类的构造函数,不得不学明白的重点
    C++编译器的函数名修饰规则
    递归和尾递归的比较,斐波那契
  • 原文地址:https://www.cnblogs.com/liangrx06/p/5083804.html
Copyright © 2011-2022 走看看