zoukankan      html  css  js  c++  java
  • 九度OJ 1044:Pre-Post(先序后序) (n叉树、递归)

    时间限制:1 秒

    内存限制:32 兆

    特殊判题:

    提交:701

    解决:398

    题目描述:

            We are all familiar with pre-order, in-order and post-order traversals of binary trees. A common problem in data structure classes is to find the pre-order traversal of a binary tree when given the in-order and post-order traversals. Alternatively, you can find the post-order traversal when given the in-order and pre-order. However, in general you cannot determine the in-order traversal of a tree when given its pre-order and post-order traversals. Consider the four binary trees below:



        All of these trees have the same pre-order and post-order traversals. This phenomenon is not restricted to binary trees, but holds for general m-ary trees as well. 

    输入:

            Input will consist of multiple problem instances. Each instance will consist of a line of the form 
    m s1 s2 
            indicating that the trees are m-ary trees, s1 is the pre-order traversal and s2 is the post-order traversal.All traversal strings will consist of lowercase alphabetic characters. For all input instances, 1 <= m <= 20 and the length of s1 and s2 will be between 1 and 26 inclusive. If the length of s1 is k (which is the same as the length of s2, of course), the first k letters of the alphabet will be used in the strings. An input line of 0 will terminate the input.

    输出:
            For each problem instance, you should output one line containing the number of possible trees which would result in the pre-order and post-order traversals for the instance. All output values will be within the range of a 32-bit signed integer. For each problem instance, you are guaranteed that there is at least one tree with the given pre-order and post-order traversals. 

    样例输入:
    2 abc cba
    2 abc bca
    10 abc bca
    13 abejkcfghid jkebfghicda
    样例输出:
    4
    1
    45
    207352860
    来源:
    2008年上海交通大学计算机研究生机试真题

    思路:

    求对于m叉树而言其每层的叶子节点的组合方式有多少种。

    由先序和后序序列其实可以却确定每一层的叶子节点的个数,以及哪些是这一层的叶子节点,唯一不确定的就是这些节点的位置(但是由先序可以确定这些叶子节点相对位置是确定的),比如第i层有n个叶子节点(由先序和后序结合判定出),那么这层就有c(n,m)种组合方式,然后确定某个叶子节点的子树,对其进行递归求解。


    代码:

    #include <stdio.h>
    #include <string.h>
     
    #define M 20
    #define N 26
     
    int m;
     
    long long C(int m, int k)
    {
        int i;
        long long c = 1;
        for (i=m; i>k; i--)
            c *= i;
        for (i=m-k; i>0; i--)
            c /= i;
        return c;
    }
     
    long long prepost(char s1[], char s2[])
    {
        int len = strlen(s1);
        if (len == 0 || len == 1)
            return 1;
     
        char root;
        int c;
        char sch1[M][N+1], sch2[M][N+1];
        int i, j, k;
        c = 0;
        i = 1;
        while (i < len)
        {
            root = s1[i];
            j = i-1;
            k = 0;
            do
            {
                sch1[c][k] = s1[i];
                sch2[c][k] = s2[j];
                k++;
                i++;
            } while (s2[j++] != root);
            sch1[c][k] = '';
            sch2[c][k] = '';
            c++;
        }
     
        long long count = C(m, c);
        for (i=0; i<c; i++)
            count *= prepost(sch1[i], sch2[i]);
        return count;
    }
     
    int main(void)
    {
        char s1[N+1], s2[N+1];
     
        while (scanf("%d", &m) != EOF)
        {
            scanf("%s%s", s1, s2);
            //printf("%lld
    ", C(6, 2));
            printf("%lld
    ", prepost(s1, s2));
        }
     
        return 0;
    }
    /**************************************************************
        Problem: 1044
        User: liangrx06
        Language: C
        Result: Accepted
        Time:0 ms
        Memory:912 kb
    ****************************************************************/



    编程算法爱好者。
  • 相关阅读:
    青蛙学Linux—MySQL常用命令(二)
    青蛙学Linux—MySQL常用命令(一)
    青蛙学Linux—MySQL安装和初始化
    青蛙学Linux—MySQL
    青蛙学Linux—Apache提供HTTPS服务
    青蛙学Linux—Apache配置PHP支持
    青蛙学Linux—Apache+Tomcat实现动静分离以及负载均衡
    青蛙学Linux—Apache负载均衡的实现
    青蛙学Linux—Apache反向代理的实现
    青蛙学Linux—Apache的MPM模式和httpd-mpm.conf
  • 原文地址:https://www.cnblogs.com/liangrx06/p/5083987.html
Copyright © 2011-2022 走看看