zoukankan      html  css  js  c++  java
  • [LeetCode]-009-Palindrome_Number

    Determine whether an integer is a palindrome. Do this without extra space.

    Some hints:

    Could negative integers be palindromes? (ie, -1)

    If you are thinking of converting the integer to string, note the restriction of using extra space.

    You could also try reversing an integer. However, if you have solved the problem "Reverse Integer", you know that the reversed integer might overflow. How would you handle such case?

    There is a more generic way of solving this problem.

    题目:判断一个整数是否是回文的

    1、负数可以是回文的吗 负数不是回文整数
    2、如果你想把整形转换成字符串来处理,注意空间限制
    3、你也可以反转整数,但是可能出现溢出的情况

    Test  cases:

    -2147483648
    =>false
    -1
    =>false
    212
    =>true
    3
    =>true

     1 public class Solution{
     2     public boolean isPalindrome(int x) {
     3         if(x<0)
     4             return false;
     5         if(x>=0 && x<=9)
     6             return true;
     7         int len = (x + "").length();
     8         int[] arr = new int[len];
     9         int index = 0;
    10         while(x>0){
    11             arr[index++] = x%10;
    12             x = x/10;
    13         }
    14         System.out.println(Arrays.toString(arr));
    15         int middle = (len+1)/2;
    16         boolean flag = true;
    17         for(index=0; index<middle; index++){
    18             if(arr[index] != arr[len-1-index]){
    19                 flag = false;
    20             }
    21         }
    22         return flag;
    23     }
    24     
    25     public static void main(String[] args){
    26         int param = 5486;
    27         if(args.length!=0)
    28             param = Integer.valueOf(args[0]);
    29         Solution solution = new Solution();
    30         boolean res = solution.isPalindrome(param);
    31         System.out.println(res);
    32     }
    33 }
  • 相关阅读:
    (最小路径覆盖) poj 1422
    (匈牙利算法) hdu 2119
    (匈牙利算法) hdu 4185
    (匈牙利算法) hdu 2063
    (匈牙利算法)hdu 1281
    (匈牙利算法DFS)hdu 3729
    (01 染色判奇环) hdu 3478
    (多重背包)poj 1276
    (判断欧拉回路)poj 1368
    (差分约束) hdu 1384
  • 原文地址:https://www.cnblogs.com/lianliang/p/5396311.html
Copyright © 2011-2022 走看看