zoukankan      html  css  js  c++  java
  • Uva 10177 (2/3/4)D Sqr/Rects/Cubes/Boxes?

    Problem J

    (2/3/4)-D Sqr/Rects/Cubes/Boxes?

    Input: standard input

    Output: standard output

    Time Limit: 2 seconds

    You can see a (4x4) grid below. Can you tell me how many squares and rectangles are hidden there? You can assume that squares are not rectangles. Perhaps one can count it by hand but can you count it for a (100x100) grid or a (10000x10000) grid. Can you do it for higher dimensions? That is can you count how many cubes or boxes of different size are there in a (10x10x10) sized cube or how many hyper-cubes or hyper-boxes of different size are there in a four-dimensional (5x5x5x5) sized hypercube. Remember that your program needs to be very efficient. You can assume that squares are not rectangles, cubes are not boxes and hyper-cubes are not hyper-boxes.

    Fig: A 4x4 Grid

    Fig: A 4x4x4 Cube

     

    Input

    The input contains one integer N (0<=N<=100) in each line, which is the length of one side of the grid or cube or hypercube. As for the example above the value ofN is 4. There may be as many as 100 lines of input.

    Output

    For each line of input, output six integers S2, R2, S3, R3, S4, R4 in a single line whereS2 means no of squares of different size in( NxN) two-dimensional grid,R2 means no of rectangles of different size in(NxN) two-dimensional grid.S3, R3, S4, R4 means similar cases in higher dimensions as described before. 

    Sample Input:

    1 2 3

    Sample Output:

    1 0 1 0 1 0

    5 4 9 18 17 64

    14 22 36 180 98 1198

    #include<stdio.h>
    
    int main()
    {
        long long s2, r2, s3, r3, s4, r4, n;
        int i;
        while(scanf("%lld", &n) != EOF)
        {
            s2 = n*(n+1)*(2*n+1)/6;
            
            for(r2=0,i=n; i>=1; --i)
            r2 += i*i*(i-1);
            
            s3 = s2 + r2;
            r3 = ((n+1)*n/2-1)*s3;
            
            for(s4=0,i=n; i>=1; --i)
            s4 += i*i*i*i;
            
            for(r4=0,i=n; i>=1; --i)
            r4 += i*(s3+r3-i*i*i);
            
            printf("%lld %lld %lld %lld %lld %lld\n", s2, r2, s3, r3, s4, r4);
        }
        return 0;
    }

    解题思路:

    四维N*N*N*N的情况和三维的情况差不多:

    S4 = n^4 + (n-1)^4 + ... ... + 1^4

    R4 = n*(S3+R3-n^3) + (n-1)*(S3+R3-(n-1)^3) + ... ... + 1*(R3+S3-1^3);


    推了两个小时,可耻地AC了(1y)

  • 相关阅读:
    vim+makefile入门编辑,编译,差错实例
    vim操作备忘录
    vim学习、各类插件配置与安装
    ubuntu命令行下java工程编辑与算法(第四版)环境配置
    【RabbitMQ】命令行使用学习
    【Docker】RabbitMQ使用学习
    Jmeter如何把响应数据的结果保存到本地的一个文件
    Selenium + Python 自动化测试环境搭建
    Jmeter监控服务器-CPU,Memory,Disk,Network性能指标
    Jmeter 聚合报告---测试结果分析
  • 原文地址:https://www.cnblogs.com/liaoguifa/p/2945042.html
Copyright © 2011-2022 走看看