34-N皇后问题 II
根据n皇后问题,现在返回n皇后不同的解决方案的数量而不是具体的放置布局。
样例
比如n=4,存在2种解决方案
标签
递归
思路
参考http://www.cnblogs.com/libaoquan/p/7073252.html
code
class Solution {
public:
/**
* Calculate the total number of distinct N-Queen solutions.
* @param n: The number of queens.
* @return: The total number of distinct solutions.
*/
int totalNQueens(int n) {
// write your code here
if(n == 1) {
return 1;
}
else if(n < 4) {
return 0;
}
int result = 0;
int i=0, row=0, col=0, j=0, k=0;
int *pCheckerboard = new int[n];
for(i=0; i<n; i++) {
pCheckerboard[i] = -1;
}
while(row < n) {
while(col < n) {
if(canPlace(row, col, n, pCheckerboard)) {
pCheckerboard[row] = col;
col = 0;
break;
}
else {
col++;
}
}
if(pCheckerboard[row] == -1) {
if(row == 0) {
break;
}
else {
row--;
col = pCheckerboard[row] + 1;
pCheckerboard[row] = -1;
continue;
}
}
if(row == n-1) {
result++;
col = pCheckerboard[row] + 1;
pCheckerboard[row] = -1;
continue;
}
row++;
}
delete[] pCheckerboard;
return result;
}
int canPlace(int row, int col, int n, int *pCheckerboard) {
int i;
for(i=0; i<n && i!=row; i++) {
if(pCheckerboard[i] == col) {
return 0;
}
if(abs(row-i) == abs(col-pCheckerboard[i])) {
return 0;
}
}
return 1;
}
};