zoukankan      html  css  js  c++  java
  • 常用软件配置

    1. ubuntu源设置

    1.1 设置中选择源
    setting -> software&updates -> other -> china

    2. pip源设置

    2.1 指定安装源

    pip install 要安装的包 -i https://pypi.tuna.tsinghua.edu.cn/simple
    
    pypi 清华大学源:https://pypi.tuna.tsinghua.edu.cn/simple
    pypi 豆瓣源 :http://pypi.douban.com/simple/
    pypi 腾讯源:http://mirrors.cloud.tencent.com/pypi/simple
    pypi 阿里源:https://mirrors.aliyun.com/pypi/simple/
    pypi 默认官方源: https://pypi.org/simple
    

    2.2 可以把清华源设置为默认源(首先要把pip升级到10以上)

    pip install pip -U
    pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
    

    3. git本地账户设置

    3.1 设置git用户名/邮箱

    git config --global user.name [username]
    git config --global user.email [email]
    

    3.2 保存信息,避免每次输入

    echo "[credential]" >> .git/config
    echo "    helper = store" >> .git/config
    

    4. 安装特定版本的python

    4.1 安装python3.7

    wget http://www.python.org/ftp/python/3.7.1/Python-3.7.1.tgz
    tar -xvzf Python-3.7.1.tgz
    cd Python-3.7.1
    ./configure --with-ssl
    make
    sudo make install
    PATH=$PATH:$HOME/bin:/usr/local/python3.7.1/bin
    

    4.2 修改软连接

    mv /usr/bin/python /usr/bin/python.bak
    ln -s /usr/local/bin/python3.7 /usr/bin/python
    mv /usr/bin/pip /usr/bin/pip.bak
    ln -s /usr/local/bin/pip3 /usr/bin/pip
    

    4.3 相关错误

    Q1: 报ssl module in Python is not available的错误
    A: https://blog.csdn.net/zr1076311296/article/details/75136612

    Q2: 报zipimport.ZipImportError: can’t decompress data; zlib not available in Linux
    A: sudo apt-get install zlib*

    Q3: sqlite
    A: 参考:https://www.jianshu.com/p/dd4532457b9f

    5. Docker

    5.1 错误

    • Q: Error response from daemon: Get https://registry-1.docker.io/v2/ ... read: connection refused
    • A: CSDN资料
    • A: 简书资料

    5.2 pull镜像修改,加快下载速度
    /etc/docker/daemon.json文件中添加下面参数,此处使用的是中国科技大学的docker镜像源

    {
       "registry-mirrors" : ["https://docker.mirrors.ustc.edu.cn"],
        "runtimes": {
            "nvidia": {
                "path": "nvidia-container-runtime",
                "runtimeArgs": []
            }
        }
    
    }
    

    6. 安装tensorflow_GPU版,需要NVIDIA+CUDA+cuDNN

    6.1 安装的是TensorFlow2,与安装TensorFlow1.x有差别

    TensorFlow相应版本对应的CUDA和cuDNN,页面底部

    #版本:tensorflow=2.1.0 CUDA=10.1.243-1 cuDNN=7.6.5.32-1+cuda10.1
    
    # Add NVIDIA package repositories
    # Add HTTPS support for apt-key
    
    $ sudo apt-get install gnupg-curl
    $ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_10.1.243-1_amd64.deb
    $ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
    $ sudo dpkg -i cuda-repo-ubuntu1604_10.1.243-1_amd64.deb
    $ sudo apt-get update
    $ wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
    $ sudo apt install ./nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
    $ sudo apt-get update
    
    # Issue with driver install requires creating /usr/lib/nvidia
    sudo mkdir /usr/lib/nvidia
    
    # Install NVIDIA driver 安装cuda时会自动安装适合自己的NVIDIA驱动
    # Install development and runtime libraries (~4GB)
    sudo apt-get install --no-install-recommends 
        cuda-10-1 
        libcudnn7=7.6.5.32-1+cuda10.1  
        libcudnn7-dev=7.6.5.32-1+cuda10.1
    # Reboot. Check that GPUs are visible using the command: nvidia-smi
    
    # Install TensorRT. Requires that libcudnn7 is installed above.
    sudo apt-get install -y --no-install-recommends 
        libnvinfer6=6.0.1-1+cuda10.1 
        libnvinfer-dev=6.0.1-1+cuda10.1 
        libnvinfer-plugin6=6.0.1-1+cuda10.1
    
    #查看已经暗转的cuda和NVIDIA
    $ sudo dpkg -l |grep cuda
    $ sudo lspci | grep -i nvidia
    

    6.2 安装的是TensorFlow相关

    TensorFlow相应版本对应的CUDA和cuDNN,页面底部

    #版本:tensorflow=1.14.0 CUDA=10.0.130-1 cuDNN=7.4.1.5 TensorRT=5.1.5-1+cuda10.0
    
    # Add NVIDIA package repositories
    # Add HTTPS support for apt-key
    
    $ sudo apt-get install gnupg-curl
    $ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/cuda-repo-ubuntu1604_10.0.130-1_amd64.deb
    $ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
    $ sudo dpkg -i cuda-repo-ubuntu1604_10.0.130-1_amd64.deb
    $ sudo apt-get update
    $ wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
    $ sudo apt install ./nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
    $ sudo apt-get update
    
    # Issue with driver install requires creating /usr/lib/nvidia
    sudo mkdir /usr/lib/nvidia
    
    # Install NVIDIA driver 安装cuda时会自动安装适合自己的NVIDIA驱动
    # Install development and runtime libraries (~4GB)
    sudo apt-get install --no-install-recommends 
        cuda-10-0 
        libcudnn7=7.4.1.5-1+cuda10.0  
        libcudnn7-dev=7.4.1.5-1+cuda10.0
    # Reboot. Check that GPUs are visible using the command: nvidia-smi
    
    # Install TensorRT. Requires that libcudnn7 is installed above.
    sudo apt-get install -y --no-install-recommends 
        libnvinfer5=5.1.5-1+cuda10.0 
        libnvinfer-dev=5.1.5-1+cuda10.0 
    
    #libnvinfer5_5.1.5-1+cuda10.0_amd64.deb
    

    6.2 测试tensorflow GPU版是否安装成功

    $ import tensorflow as tf
    $ tf.test.is_gpu_available()
    

    6.3 tensorflow不能使用GPU提示:

    W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer.so.6'; dlerror: libcublasLt.so.10: cannot open shared object file: No such file or directory;
    W tensorflow/stream_executor/platform/default/dso_loader.cc:55] Could not load dynamic library 'libnvinfer_plugin.so.6'; dlerror: libcublasLt.so.10: cannot open shared object file: No such file or directory; 
    W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:30] Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
    
    # 经过搜索发现libnvinfer.so.6 位于/usr/lib/x86_64-linux-gnu/ libcublasLt.so.10位于/usr/local/cuda-10.2/targets/x86_64-linux/lib/lib
    $ export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda/extras/CUPTI/lib64
    $ sudo cp /usr/lib/x86_64-linux-gnu/libnvinfer* /usr/local/cuda/targets/x86_64-linux/lib
    $ sudo cp /usr/local/cuda-10.2/targets/x86_64-linux/lib/lib* /usr/local/cuda/targets/x86_64-linux/lib
    

    7. 键鼠共享

    安家的参考博客

  • 相关阅读:
    1451. Rearrange Words in a Sentence
    1450. Number of Students Doing Homework at a Given Time
    1452. People Whose List of Favorite Companies Is Not a Subset of Another List
    1447. Simplified Fractions
    1446. Consecutive Characters
    1448. Count Good Nodes in Binary Tree
    709. To Lower Case
    211. Add and Search Word
    918. Maximum Sum Circular Subarray
    lua 时间戳和时间互转
  • 原文地址:https://www.cnblogs.com/libbin/p/configure.html
Copyright © 2011-2022 走看看