zoukankan      html  css  js  c++  java
  • 学习笔记TF020:序列标注、手写小写字母OCR数据集、双向RNN

    序列标注(sequence labelling),输入序列每一帧预测一个类别。OCR(Optical Character Recognition 光学字符识别)。

    MIT口语系统研究组Rob Kassel收集,斯坦福大学人工智能实验室Ben Taskar预处理OCR数据集(http://ai.stanford.edu/~btaskar/ocr/ ),包含大量单独手写小写字母,每个样本对应16X8像素二值图像。字线组合序列,序列对应单词。6800个,长度不超过14字母的单词。gzip压缩,内容用Tab分隔文本文件。Python csv模块直接读取。文件每行一个归一化字母属性,ID号、标签、像素值、下一字母ID号等。

    下一字母ID值排序,按照正确顺序读取每个单词字母。收集字母,直到下一个ID对应字段未被设置为止。读取新序列。读取完目标字母及数据像素,用零图像填充序列对象,能纳入两个较大目标字母所有像素数据NumPy数组。

    时间步之间共享softmax层。数据和目标数组包含序列,每个目标字母对应一个图像帧。RNN扩展,每个字母输出添加softmax分类器。分类器对每帧数据而非整个序列评估预测结果。计算序列长度。一个softmax层添加到所有帧:或者为所有帧添加几个不同分类器,或者令所有帧共享同一个分类器。共享分类器,权值在训练中被调整次数更多,训练单词每个字母。一个全连接层权值矩阵维数batch_size*in_size*out_size。现需要在两个输入维度batch_size、sequence_steps更新权值矩阵。令输入(RNN输出活性值)扁平为形状batch_size*sequence_steps*in_size。权值矩阵变成较大的批数据。结果反扁平化(unflatten)。

    代价函数,序列每一帧有预测目标对,在相应维度平均。依据张量长度(序列最大长度)归一化的tf.reduce_mean无法使用。需要按照实际序列长度归一化,手工调用tf.reduce_sum和除法运算均值。

    损失函数,tf.argmax针对轴2非轴1,各帧填充,依据序列实际长度计算均值。tf.reduce_mean对批数据所有单词取均值。

    TensorFlow自动导数计算,可使用序列分类相同优化运算,只需要代入新代价函数。对所有RNN梯度裁剪,防止训练发散,避免负面影响。

    训练模型,get_sataset下载手写体图像,预处理,小写字母独热编码向量。随机打乱数据顺序,分偏划分训练集、测试集。

    单词相邻字母存在依赖关系(或互信息),RNN保存同一单词全部输入信息到隐含活性值。前几个字母分类,网络无大量输入推断额外信息,双向RNN(bidirectional RNN)克服缺陷。
    两个RNN观测输入序列,一个按照通常顺序从左端读取单词,另一个按照相反顺序从右端读取单词。每个时间步得到两个输出活性值。送入共享softmax层前,拼接。分类器从每个字母获取完整单词信息。tf.modle.rnn.bidirectional_rnn已实现。

    实现双向RNN。划分预测属性到两个函数,只关注较少内容。_shared_softmax函数,传入函数张量data推断输入尺寸。复用其他架构函数,相同扁平化技巧在所有时间步共享同一个softmax层。rnn.dynamic_rnn创建两个RNN。
    序列反转,比实现新反向传递RNN运算容易。tf.reverse_sequence函数反转帧数据中sequence_lengths帧。数据流图节点有名称。scope参数是rnn_dynamic_cell变量scope名称,默认值RNN。两个参数不同RNN,需要不同域。
    反转序列送入后向RNN,网络输出反转,和前向输出对齐。沿RNN神经元输出维度拼接两个张量,返回。双向RNN模型性能更优。

        import gzip
        import csv
        import numpy as np
    
        from helpers import download
    
        class OcrDataset:
    
            URL = 'http://ai.stanford.edu/~btaskar/ocr/letter.data.gz'
    
            def __init__(self, cache_dir):
                path = download(type(self).URL, cache_dir)
                lines = self._read(path)
                data, target = self._parse(lines)
                self.data, self.target = self._pad(data, target)
    
            @staticmethod
            def _read(filepath):
                with gzip.open(filepath, 'rt') as file_:
                    reader = csv.reader(file_, delimiter='	')
                    lines = list(reader)
                    return lines
    
            @staticmethod
            def _parse(lines):
                lines = sorted(lines, key=lambda x: int(x[0]))
                data, target = [], []
                next_ = None
                for line in lines:
                    if not next_:
                        data.append([])
                        target.append([])
                    else:
                        assert next_ == int(line[0])
                    next_ = int(line[2]) if int(line[2]) > -1 else None
                    pixels = np.array([int(x) for x in line[6:134]])
                    pixels = pixels.reshape((16, 8))
                    data[-1].append(pixels)
                    target[-1].append(line[1])
                return data, target
    
            @staticmethod
            def _pad(data, target):
                max_length = max(len(x) for x in target)
                padding = np.zeros((16, 8))
                data = [x + ([padding] * (max_length - len(x))) for x in data]
                target = [x + ([''] * (max_length - len(x))) for x in target]
                return np.array(data), np.array(target)
    
        import tensorflow as tf
    
        from helpers import lazy_property
    
        class SequenceLabellingModel:
    
            def __init__(self, data, target, params):
                self.data = data
                self.target = target
                self.params = params
                self.prediction
                self.cost
                self.error
                self.optimize
    
            @lazy_property
            def length(self):
                used = tf.sign(tf.reduce_max(tf.abs(self.data), reduction_indices=2))
                length = tf.reduce_sum(used, reduction_indices=1)
                length = tf.cast(length, tf.int32)
                return length
    
            @lazy_property
            def prediction(self):
                output, _ = tf.nn.dynamic_rnn(
                    tf.nn.rnn_cell.GRUCell(self.params.rnn_hidden),
                    self.data,
                    dtype=tf.float32,
                    sequence_length=self.length,
                )
                # Softmax layer.
                max_length = int(self.target.get_shape()[1])
                num_classes = int(self.target.get_shape()[2])
                weight = tf.Variable(tf.truncated_normal(
                    [self.params.rnn_hidden, num_classes], stddev=0.01))
                bias = tf.Variable(tf.constant(0.1, shape=[num_classes]))
                # Flatten to apply same weights to all time steps.
                output = tf.reshape(output, [-1, self.params.rnn_hidden])
                prediction = tf.nn.softmax(tf.matmul(output, weight) + bias)
                prediction = tf.reshape(prediction, [-1, max_length, num_classes])
                return prediction
    
            @lazy_property
            def cost(self):
                # Compute cross entropy for each frame.
                cross_entropy = self.target * tf.log(self.prediction)
                cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2)
                mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))
                cross_entropy *= mask
                # Average over actual sequence lengths.
                cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1)
                cross_entropy /= tf.cast(self.length, tf.float32)
                return tf.reduce_mean(cross_entropy)
    
            @lazy_property
            def error(self):
                mistakes = tf.not_equal(
                    tf.argmax(self.target, 2), tf.argmax(self.prediction, 2))
                mistakes = tf.cast(mistakes, tf.float32)
                mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))
                mistakes *= mask
                # Average over actual sequence lengths.
                mistakes = tf.reduce_sum(mistakes, reduction_indices=1)
                mistakes /= tf.cast(self.length, tf.float32)
                return tf.reduce_mean(mistakes)
    
            @lazy_property
            def optimize(self):
                gradient = self.params.optimizer.compute_gradients(self.cost)
                try:
                    limit = self.params.gradient_clipping
                    gradient = [
                        (tf.clip_by_value(g, -limit, limit), v)
                        if g is not None else (None, v)
                        for g, v in gradient]
                except AttributeError:
                    print('No gradient clipping parameter specified.')
                optimize = self.params.optimizer.apply_gradients(gradient)
                return optimize
    
        import random
    
        import tensorflow as tf
        import numpy as np
    
        from helpers import AttrDict
    
        from OcrDataset import OcrDataset
        from SequenceLabellingModel import SequenceLabellingModel
        from batched import batched
    
        params = AttrDict(
            rnn_cell=tf.nn.rnn_cell.GRUCell,
            rnn_hidden=300,
            optimizer=tf.train.RMSPropOptimizer(0.002),
            gradient_clipping=5,
            batch_size=10,
            epochs=5,
            epoch_size=50
        )
    
        def get_dataset():
            dataset = OcrDataset('./ocr')
            # Flatten images into vectors.
            dataset.data = dataset.data.reshape(dataset.data.shape[:2] + (-1,))
            # One-hot encode targets.
            target = np.zeros(dataset.target.shape + (26,))
            for index, letter in np.ndenumerate(dataset.target):
                if letter:
                    target[index][ord(letter) - ord('a')] = 1
            dataset.target = target
            # Shuffle order of examples.
            order = np.random.permutation(len(dataset.data))
            dataset.data = dataset.data[order]
            dataset.target = dataset.target[order]
            return dataset
    
        # Split into training and test data.
        dataset = get_dataset()
        split = int(0.66 * len(dataset.data))
        train_data, test_data = dataset.data[:split], dataset.data[split:]
        train_target, test_target = dataset.target[:split], dataset.target[split:]
    
        # Compute graph.
        _, length, image_size = train_data.shape
        num_classes = train_target.shape[2]
        data = tf.placeholder(tf.float32, [None, length, image_size])
        target = tf.placeholder(tf.float32, [None, length, num_classes])
        model = SequenceLabellingModel(data, target, params)
        batches = batched(train_data, train_target, params.batch_size)
    
        sess = tf.Session()
        sess.run(tf.initialize_all_variables())
        for index, batch in enumerate(batches):
            batch_data = batch[0]
            batch_target = batch[1]
            epoch = batch[2]
            if epoch >= params.epochs:
                break
            feed = {data: batch_data, target: batch_target}
            error, _ = sess.run([model.error, model.optimize], feed)
            print('{}: {:3.6f}%'.format(index + 1, 100 * error))
    
        test_feed = {data: test_data, target: test_target}
        test_error, _ = sess.run([model.error, model.optimize], test_feed)
        print('Test error: {:3.6f}%'.format(100 * error))
    
        import tensorflow as tf
    
        from helpers import lazy_property
    
        class BidirectionalSequenceLabellingModel:
    
            def __init__(self, data, target, params):
                self.data = data
                self.target = target
                self.params = params
                self.prediction
                self.cost
                self.error
                self.optimize
    
            @lazy_property
            def length(self):
                used = tf.sign(tf.reduce_max(tf.abs(self.data), reduction_indices=2))
                length = tf.reduce_sum(used, reduction_indices=1)
                length = tf.cast(length, tf.int32)
                return length
    
            @lazy_property
            def prediction(self):
                output = self._bidirectional_rnn(self.data, self.length)
                num_classes = int(self.target.get_shape()[2])
                prediction = self._shared_softmax(output, num_classes)
                return prediction
    
            def _bidirectional_rnn(self, data, length):
                length_64 = tf.cast(length, tf.int64)
                forward, _ = tf.nn.dynamic_rnn(
                    cell=self.params.rnn_cell(self.params.rnn_hidden),
                    inputs=data,
                    dtype=tf.float32,
                    sequence_length=length,
                    scope='rnn-forward')
                backward, _ = tf.nn.dynamic_rnn(
                cell=self.params.rnn_cell(self.params.rnn_hidden),
                inputs=tf.reverse_sequence(data, length_64, seq_dim=1),
                dtype=tf.float32,
                sequence_length=self.length,
                scope='rnn-backward')
                backward = tf.reverse_sequence(backward, length_64, seq_dim=1)
                output = tf.concat(2, [forward, backward])
                return output
    
            def _shared_softmax(self, data, out_size):
                max_length = int(data.get_shape()[1])
                in_size = int(data.get_shape()[2])
                weight = tf.Variable(tf.truncated_normal(
                    [in_size, out_size], stddev=0.01))
                bias = tf.Variable(tf.constant(0.1, shape=[out_size]))
                # Flatten to apply same weights to all time steps.
                flat = tf.reshape(data, [-1, in_size])
                output = tf.nn.softmax(tf.matmul(flat, weight) + bias)
                output = tf.reshape(output, [-1, max_length, out_size])
                return output
    
            @lazy_property
            def cost(self):
                # Compute cross entropy for each frame.
                cross_entropy = self.target * tf.log(self.prediction)
                cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2)
                mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))
                cross_entropy *= mask
                # Average over actual sequence lengths.
                cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1)
                cross_entropy /= tf.cast(self.length, tf.float32)
                return tf.reduce_mean(cross_entropy)
    
            @lazy_property
            def error(self):
                mistakes = tf.not_equal(
                    tf.argmax(self.target, 2), tf.argmax(self.prediction, 2))
                mistakes = tf.cast(mistakes, tf.float32)
                mask = tf.sign(tf.reduce_max(tf.abs(self.target), reduction_indices=2))
                mistakes *= mask
                # Average over actual sequence lengths.
                mistakes = tf.reduce_sum(mistakes, reduction_indices=1)
                mistakes /= tf.cast(self.length, tf.float32)
                return tf.reduce_mean(mistakes)
    
            @lazy_property
            def optimize(self):
                gradient = self.params.optimizer.compute_gradients(self.cost)
                try:
                    limit = self.params.gradient_clipping
                    gradient = [
                        (tf.clip_by_value(g, -limit, limit), v)
                        if g is not None else (None, v)
                        for g, v in gradient]
                except AttributeError:
                    print('No gradient clipping parameter specified.')
                optimize = self.params.optimizer.apply_gradients(gradient)
                return optimize

    参考资料:
    《面向机器智能的TensorFlow实践》

    欢迎加我微信交流:qingxingfengzi
    我的微信公众号:qingxingfengzigz
    我老婆张幸清的微信公众号:qingqingfeifangz

  • 相关阅读:
    mysql事务
    数据类型
    win10 开启全局代理
    高并发的一些思考
    多线程也不一定比单线程快
    单线程的JavaScript
    Vue2 响应式原理
    检查Object是否存在某个属性
    堆和栈
    LeetCode
  • 原文地址:https://www.cnblogs.com/libinggen/p/6943296.html
Copyright © 2011-2022 走看看