zoukankan      html  css  js  c++  java
  • AGC069F Flags

    原题链接

    显然,答案具有单调性.所以珂以考虑二分

    假设目前二分的答案为\(\text{d}\).

    现在题目转化为:有\(2N\)个坐标,其中有一些不能被Flags同时占据,问是否有一种Flags占据坐标的方法.

    在所有珂能的坐标中,两个坐标\(x_1, x_2\)不能同时被Flags占据的充要条件是\(|x_1-x_2|\ge d\)\(\text{belong}_{x_1}!=\text{belong}_{x2}\)

    这珂以用\(\text{2-sat}\)解决.

    然后还有一个问题,就是珂能有非常多组坐标不能同时被Flags占据,如果直接在\(\text{2-sat}\)中建边就会爆掉.

    先把所有的坐标排序,放置在数组A中.

    考虑对于每一个\(x_1\),若\(x_2\)\(x_1\)不能同时被Flags占据,那么\(x_2\)在数组A中的位置是以一个区间和零散的坐标的形式呈现.

    所以我们珂以线段树优化建图.

    时间复杂度\(O(n\log n\log \text{1e9})\) 然而窝人傻常数太大跑得极慢

    贴一下代码:

    // by H~$~C
    #include <bits/stdc++.h>
    using namespace std;
    
    static const int Maxn = 20005;
    
    int n;
    int x[Maxn], y[Maxn];
    vector<pair<int, int> > pos;
    
    namespace two_sat {
      int n;
      vector<vector<int> > g;
      vector<int> dfn, scc, low;
      vector<bool> instk;
      int scc_size, indx;
      stack<int> stk;
      void tarjan(int u) {
        dfn[u] = low[u] = ++indx;
        stk.push(u);
        instk[u] = true;
        for (int &v: g[u]) {
          if (!dfn[v]) {
            tarjan(v);
            low[u] = min(low[u], low[v]);
          }
          else if (instk[v]) {
            low[u] = min(low[u], dfn[v]);
          }
        }
        if (dfn[u] == low[u]) {
          scc_size++;
          do {
            int v = stk.top(); stk.pop();
            scc[v] = scc_size;
            instk[v] = false;
            if (v == u) break;
          } while (1);
        }
      }
      inline int inv(int x) { return x ^ 1; }
      inline void clear() {
        n = 0, g.clear();
        while (!stk.empty()) stk.pop();
        scc_size = indx = 0;
        instk.clear();
      }
      inline int newnode() {
        g.push_back(vector<int>());
        g.push_back(vector<int>());
        return 2 * n++;
      }
      inline void init(int x) {
        clear();
        while (n < x) newnode();
      }
      inline void imply(int a, int b) {
        g[a].push_back(b);
        g[inv(b)].push_back(inv(a));
      }
      bool solve() {
        dfn.assign(n * 2, 0);
        low.assign(n * 2, 0);
        scc.assign(n * 2, 0);
        instk.assign(n * 2, false);
        scc_size = indx = 0;
        for (int i = 0; i < n * 2; ++i) {
          if (!dfn[i]) {
            tarjan(i);
          }
        }
        for (int i = 0; i < n; ++i) {
          if (scc[2 * i] == scc[2 * i + 1])
            return false;
        }
        return true;
      }
    }
    
    #define ls (p * 2 + 1)
    #define rs (p * 2 + 2)
    #define mid (l + r >> 1)
    int tr[Maxn << 2];
    void build(int p, int l, int r) {
      tr[p] = two_sat::newnode();
      if (l == r) {
        two_sat::imply(tr[p], two_sat::inv(pos[l].second));
        return ;
      }
      build(ls, l, mid);
      build(rs, mid + 1, r);
      two_sat::imply(tr[p], tr[ls]);
      two_sat::imply(tr[p], tr[rs]);
    }
    void link_edge(int p, int l, int r, int L, int R, int id) {
      if (L > r || l > R) return ;
      if (L <= l && r <= R) {
        two_sat::imply(id, tr[p]);
        return ;
      }
      link_edge(ls, l, mid, L, R, id);
      link_edge(rs, mid + 1, r, L, R, id);
    }
    #undef ls
    #undef rs
    #undef mid
    
    bool check(int d) {
      two_sat::init(n);
      build(0, 0, n * 2 - 1);
      for (int i = 0; i < n * 2; ++i) {
        int st = lower_bound(pos.begin(), pos.end(), make_pair(pos[i].first - d + 1, 0)) - pos.begin();
        int ed = lower_bound(pos.begin(), pos.end(), make_pair(pos[i].first + d, 0)) - pos.begin();
        if (i > st) link_edge(0, 0, n * 2 - 1, st, i - 1, pos[i].second);
        if (i < ed - 1) link_edge(0, 0, n * 2 - 1, i + 1, ed - 1, pos[i].second);
      }
      return two_sat::solve();
    }
    
    int main() {
      scanf("%d", &n);
      for (int i = 0; i < n; ++i) {
        scanf("%d%d", x + i, y + i);
        pos.push_back({x[i], i * 2});
        pos.push_back({y[i], i * 2 + 1});
      }
      sort(pos.begin(), pos.end());
      int l = 0, r = 1000000000, ans = 0;
      while (l <= r) {
        int mid = l + r >> 1;
        if (check(mid)) l = mid + 1, ans = mid;
        else r = mid - 1;
      }
      printf("%d\n", ans);
      return 0;
    }
    
    
  • 相关阅读:
    配置磁盘映射(在服务器和eclipse 中)
    服务器mysql授权连接用户
    validationEngine验证的使用
    Remove '@override' annotation解决办法
    js页面报错javax.servlet.jsp.PageContext cannot be resolved to a type解决
    如何正确使用log4j
    Log4j使用教程
    windows系统修改mysql端口的方法
    on条件与where条件的区别
    mybaits错误解决:There is no getter for property named 'id' in class 'java.lang.String'
  • 原文地址:https://www.cnblogs.com/libra9z/p/12387320.html
Copyright © 2011-2022 走看看