在蓝牙enable的过程中会进行多个线程的创建以及将线程与队列进行绑定的工作。该篇文章主要分析一下处理hci数据这个 线程。
void BTU_StartUp(void) { ... btu_bta_msg_queue = fixed_queue_new(SIZE_MAX); btu_general_alarm_hash_map = hash_map_new(BTU_GENERAL_ALARM_HASH_MAP_SIZE, hash_function_pointer, NULL, (data_free_fn)alarm_free, NULL); btu_general_alarm_queue = fixed_queue_new(SIZE_MAX); btu_oneshot_alarm_hash_map = hash_map_new(BTU_ONESHOT_ALARM_HASH_MAP_SIZE, hash_function_pointer, NULL, (data_free_fn)alarm_free, NULL); btu_oneshot_alarm_queue = fixed_queue_new(SIZE_MAX); btu_l2cap_alarm_hash_map = hash_map_new(BTU_L2CAP_ALARM_HASH_MAP_SIZE, hash_function_pointer, NULL, (data_free_fn)alarm_free, NULL); btu_l2cap_alarm_queue = fixed_queue_new(SIZE_MAX); bt_workqueue_thread = thread_new(BT_WORKQUEUE_NAME);//该线程为处理各个task 的线程,之后会与多个队列绑定
// Continue startup on bt workqueue thread. thread_post(bt_workqueue_thread, btu_task_start_up, NULL);//在bt_workqueue_thread中继续startup的工作
return;
}
剩下的enable 的工作会在这个函数中btu_task_start_up继续做:
void btu_task_start_up(UNUSED_ATTR void *context) { ... /* Initialize the mandatory core stack control blocks (BTU, BTM, L2CAP, and SDP) */ btu_init_core(); /* Initialize any optional stack components */ BTE_InitStack(); bta_sys_init(); // Inform the bt jni thread initialization is ok. btif_transfer_context(btif_init_ok, 0, NULL, 0, NULL); fixed_queue_register_dequeue(btu_bta_msg_queue,//绑定btu_bta_msg_queue thread_get_reactor(bt_workqueue_thread), btu_bta_msg_ready, NULL); fixed_queue_register_dequeue(btu_hci_msg_queue,//绑定btu_hci_msg_queue thread_get_reactor(bt_workqueue_thread), btu_hci_msg_ready, NULL); fixed_queue_register_dequeue(btu_general_alarm_queue,//绑定btu_general_alarm_queue thread_get_reactor(bt_workqueue_thread), btu_general_alarm_ready, NULL); fixed_queue_register_dequeue(btu_oneshot_alarm_queue,//绑定btu_oneshot_alarm_queue thread_get_reactor(bt_workqueue_thread), btu_oneshot_alarm_ready, NULL); fixed_queue_register_dequeue(btu_l2cap_alarm_queue,//绑定btu_l2cap_alarm_queue thread_get_reactor(bt_workqueue_thread), btu_l2cap_alarm_ready, NULL); }
这里绑定的含义就是当被绑定的队列里面有数据可以读写的时候,就会在该线程中处理,处理的函数就是fixed_queue_register_dequeue函数的第三个参数和第四个参数,分别对应于读和写的函数。
从上面的注册信息来看,都是当队列里面有数据的时候,调用函数来处理这些队列中的消息。
现在具体分析一下btu_hci_msg_queue 这个队列的处理流程。
稍微思考一下,可以想到从controller 传上来的消息都会塞到这个队列里面。现在具体的分析,controller传上来的数据 都是通过bt driver来上传的,上传上来的数据有event以及acl data,这两者应该都是放置到这个队列进行处理的。
在协议栈中,当底层有数据的时候,会调用该函数:
hci_layer.c中:
static void hal_says_data_ready(serial_data_type_t type) { packet_receive_data_t *incoming = &incoming_packets[PACKET_TYPE_TO_INBOUND_INDEX(type)]; uint8_t byte; while (hal->read_data(type, &byte, 1, false) != 0) { switch (incoming->state) { case BRAND_NEW: // Initialize and prepare to jump to the preamble reading state incoming->bytes_remaining = preamble_sizes[PACKET_TYPE_TO_INDEX(type)]; memset(incoming->preamble, 0, PREAMBLE_BUFFER_SIZE); incoming->index = 0; incoming->state = PREAMBLE; // INTENTIONAL FALLTHROUGH case PREAMBLE: incoming->preamble[incoming->index] = byte; incoming->index++; incoming->bytes_remaining--; if (incoming->bytes_remaining == 0) { // For event and sco preambles, the last byte we read is the length incoming->bytes_remaining = (type == DATA_TYPE_ACL) ? RETRIEVE_ACL_LENGTH(incoming->preamble) : byte; size_t buffer_size = BT_HDR_SIZE + incoming->index + incoming->bytes_remaining; incoming->buffer = (BT_HDR *)buffer_allocator->alloc(buffer_size); if (!incoming->buffer) { LOG_ERROR("%s error getting buffer for incoming packet of type %d and size %zd", __func__, type, buffer_size); // Can't read any more of this current packet, so jump out incoming->state = incoming->bytes_remaining == 0 ? BRAND_NEW : IGNORE; break; } // Initialize the buffer incoming->buffer->offset = 0; incoming->buffer->layer_specific = 0; incoming->buffer->event = outbound_event_types[PACKET_TYPE_TO_INDEX(type)]; memcpy(incoming->buffer->data, incoming->preamble, incoming->index); incoming->state = incoming->bytes_remaining > 0 ? BODY : FINISHED; } break; case BODY: incoming->buffer->data[incoming->index] = byte; incoming->index++; incoming->bytes_remaining--; size_t bytes_read = hal->read_data(type, (incoming->buffer->data + incoming->index), incoming->bytes_remaining, false); incoming->index += bytes_read; incoming->bytes_remaining -= bytes_read; incoming->state = incoming->bytes_remaining == 0 ? FINISHED : incoming->state; break; case IGNORE: incoming->bytes_remaining--; if (incoming->bytes_remaining == 0) { incoming->state = BRAND_NEW; // Don't forget to let the hal know we finished the packet we were ignoring. // Otherwise we'll get out of sync with hals that embed extra information // in the uart stream (like H4). #badnewsbears hal->packet_finished(type); return; } break; case FINISHED: LOG_ERROR("%s the state machine should not have been left in the finished state.", __func__); break; } if (incoming->state == FINISHED) { incoming->buffer->len = incoming->index; btsnoop->capture(incoming->buffer, true);//capture btsnoop if (type != DATA_TYPE_EVENT) { packet_fragmenter->reassemble_and_dispatch(incoming->buffer);//acl data的处理 } else if (!filter_incoming_event(incoming->buffer)) {//event 的处理 // Dispatch the event by event code uint8_t *stream = incoming->buffer->data; uint8_t event_code; STREAM_TO_UINT8(event_code, stream); data_dispatcher_dispatch( interface.event_dispatcher, event_code, incoming->buffer ); } // We don't control the buffer anymore incoming->buffer = NULL; incoming->state = BRAND_NEW; hal->packet_finished(type); // We return after a packet is finished for two reasons: // 1. The type of the next packet could be different. // 2. We don't want to hog cpu time. return; } } }
从上面的函数可以看出,如果封包接收没有结束会继续接收,直到incoming->state == FINISHED ,这个时候说明封包完整的接收到了。对于封包的处理,做了如下的事情:
- 录制btsnoop
- 根据不同数据类型分别路由到不同的处理函数,acl data 以及其他的封包由packet_fragmenter->reassemble_and_dispatch(incoming->buffer) 来处理。event事件由
data_dispatcher_dispatch(interface.event_dispatcher,event_code,incoming->buffer)
这里分别看看两个函数的具体处理流程:
packet_fragmenter->reassemble_and_dispatch
先看看这个packet_fragmenter_t结构:
static const packet_fragmenter_t interface = { init, cleanup, fragment_and_dispatch, reassemble_and_dispatch };
其中的具体实现,我这里
static void reassemble_and_dispatch(UNUSED_ATTR BT_HDR *packet) { if ((packet->event & MSG_EVT_MASK) == MSG_HC_TO_STACK_HCI_ACL) { ... STREAM_TO_UINT16(handle, stream); STREAM_TO_UINT16(acl_length, stream); STREAM_TO_UINT16(l2cap_length, stream); BT_HDR *partial_packet = (BT_HDR *)hash_map_get(partial_packets, (void *)(uintptr_t)handle); memcpy(partial_packet->data, packet->data, packet->len); ... packet->offset = HCI_ACL_PREAMBLE_SIZE; ... memcpy( partial_packet->data + partial_packet->offset, packet->data + packet->offset, packet->len - packet->offset ); ... if (partial_packet->offset == partial_packet->len) { hash_map_erase(partial_packets, (void *)(uintptr_t)handle); partial_packet->offset = 0; callbacks->reassembled(partial_packet);//最终调用hci_hal_callbacks_t的 } } } else { callbacks->reassembled(packet); } }
上面看到最终调用callbacks->reassembled(partial_packet);来处理,实现在hci_layer.c
static const packet_fragmenter_callbacks_t packet_fragmenter_callbacks = { transmit_fragment, dispatch_reassembled,//实际调用的是这个函数 fragmenter_transmit_finished, filter_incoming_event fragmenter_transmit_finished #endif };
看具体实现:
// Callback for the fragmenter to dispatch up a completely reassembled packet static void dispatch_reassembled(BT_HDR *packet) { // Events should already have been dispatched before this point assert(upwards_data_queue != NULL); if (upwards_data_queue) {//放置都这个queue fixed_queue_enqueue(upwards_data_queue, packet); } else { LOG_ERROR("%s had no queue to place upwards data packet in. Dropping it on the floor.", __func__); buffer_allocator->free(packet); } }
static void set_data_queue(fixed_queue_t *queue) { //这个函数对该队列赋值 upwards_data_queue = queue; }
static void init_layer_interface() { if (!interface_created) { interface.send_low_power_command = low_power_manager->post_command; interface.do_postload = do_postload; interface.event_dispatcher = data_dispatcher_new("hci_layer"); interface.set_data_queue = set_data_queue;//肯定是别的地方调用hci 的interface来设置这个队列的 interface.transmit_command = transmit_command; interface.transmit_command_futured = transmit_command_futured; interface.transmit_downward = transmit_downward; interface_created = true; } }
这里其实是在蓝牙初始化的时候就已经做了,
void bte_main_boot_entry(void) { module_init(get_module(GKI_MODULE)); module_init(get_module(COUNTER_MODULE)); hci = hci_layer_get_interface();//获取hci的interface btu_hci_msg_queue = fixed_queue_new(SIZE_MAX); if (btu_hci_msg_queue == NULL) { LOG_ERROR("%s unable to allocate hci message queue.", __func__); return; } data_dispatcher_register_default(hci->event_dispatcher, btu_hci_msg_queue); hci->set_data_queue(btu_hci_msg_queue);//将btu_hci_msg_queue传入,也就是后来的upwards_data_queue ... }
到这里,我们知道了,其实acl的数据都最终会放置到这个btu_hci_msg_queue 队列来处理。
现在我们看看
data_dispatcher_dispatch(interface.event_dispatcher,event_code,incoming->buffer) 的处理流程:
我们先看看data_dispatcher_dispatch的实现:
bool data_dispatcher_dispatch(data_dispatcher_t *dispatcher, data_dispatcher_type_t type, void *data) { fixed_queue_t *queue = hash_map_get(dispatcher->dispatch_table, (void *)type); if (!queue) queue = dispatcher->default_queue;//如果没有获取到专用的队列,就用默认的队列 if (queue) fixed_queue_enqueue(queue, data);//将数据加入到队列里面 return queue != NULL; }
当前不清楚 dispatcher->dispatch_table 的队列的情况,在init_layer_interface中:
interface.event_dispatcher = data_dispatcher_new("hci_layer");
这里没有设置专用的队列,那在哪里有设置呢?其实还是在上面的蓝牙init的时候:
void bte_main_boot_entry(void) { module_init(get_module(GKI_MODULE)); module_init(get_module(COUNTER_MODULE)); hci = hci_layer_get_interface();//获取hci的interface btu_hci_msg_queue = fixed_queue_new(SIZE_MAX); if (btu_hci_msg_queue == NULL) { LOG_ERROR("%s unable to allocate hci message queue.", __func__); return; } data_dispatcher_register_default(hci->event_dispatcher, btu_hci_msg_queue);//将btu_hci_msg_queue 注册给hci的event_dispatcher, hci->set_data_queue(btu_hci_msg_queue);//将btu_hci_msg_queue传入,也就是后来的upwards_data_queue ... }
void data_dispatcher_register_default(data_dispatcher_t *dispatcher, fixed_queue_t *queue) { assert(dispatcher != NULL); dispatcher->default_queue = queue; }
到这里,我们发现,的确是所有的controller上来的数据都是放置到btu_hci_msg_queue来等待处理,
后续的具体的处理流程很简单,根据不同的数据类型,发配给不同的函数来处理。