zoukankan      html  css  js  c++  java
  • 【原创 Hadoop&Spark 动手实践 1】Hadoop2.7.3 安装部署实践

    目录:

    第一部分:操作系统准备工作:

      1. 安装部署CentOS7.3 1611

      2. CentOS7软件安装(net-tools, wget, vim等)

      3. 更新CentOS7的Yum源,更新软件速度更快

      4. CentOS 用户配置,Sudo授权

    第二部分:Java环境准备

      1. JDK1.8 安装与配置

    第三部分:Hadoop配置,启动与验证

      1. 解压Hadoop2.7.3更新全局变量

      2. 更新Hadoop配置文件

      3. 启动Hadoop

      4. 验证Hadoop

     =============================================================================================

    第一部分:操作系统准备工作:

      1. 安装部署CentOS7.3 1611

      2. CentOS7软件安装(net-tools, wget, vim等)

      3. 更新CentOS7的Yum源,更新软件速度更快

      4. CentOS 用户配置,Sudo授权

    1. 安装部署CentOS7.3 1611

    2. CentOS7软件安装(net-tools, wget, vim等)

    sudo yum install -y net-tools

    sudo yum install -y wget

    sudo yum install -y vim 

     

    3. 更新CentOS7的Yum源(更新为阿里云的CentOS7的源),更新软件速度更快

     http://mirrors.aliyun.com/help/centos

    1、备份

    mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup

    2、下载新的CentOS-Base.repo 到/etc/yum.repos.d/

    CentOS 5

    wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-5.repo

    CentOS 6

    wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-6.repo

    CentOS 7

    wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo

    3、之后运行yum makecache生成缓存

    4、sudo yum -y update 对系统进行升级

     

      sudo vim /etc/hosts # 更新hosts文件,便于用spark02代表本机IP

    第二部分:Java环境准备

      1. JDK1.8 安装与配置

    通过FileZilla 上传实验所需要用到的文件(JDK,Hadoop,Spark)

    对JDK和Hadoop进行解压

     tar -zxvf jdk-8u121-linux-x64.tar.gz

     tar -zxvf hadoop-2.7.3.tar.gz

    在 .bash_profile文件内增加环境便利,便于Java和Hadoop更容易操作

    #Add JAVA_HOME and HADOOP_HOME
    export JAVA_HOME=/home/spark/jdk1.8.0_121
    export PATH=$PATH:$JAVA_HOME/bin
    export HADOOP_HOME=/home/spark/hadoop-2.7.3
    export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

    source .bash_profile #配置生效

    第三部分:Hadoop配置,启动与验证

      1. 解压Hadoop2.7.3更新全局变量

      2. 更新Hadoop配置文件

      3. 启动Hadoop

      4. 验证Hadoop

    参考:Hadoop2.7.3 官方文档进行伪分布式的配置

    http://hadoop.apache.org/docs/r2.7.3/hadoop-project-dist/hadoop-common/SingleCluster.html  

    Pseudo-Distributed Operation

    Hadoop can also be run on a single-node in a pseudo-distributed mode where each Hadoop daemon runs in a separate Java process.

    Configuration

    Use the following:

    etc/hadoop/core-site.xml:

    <configuration>
        <property>
            <name>fs.defaultFS</name>
            <value>hdfs://localhost:9000</value>
        </property>
    </configuration>
    

    etc/hadoop/hdfs-site.xml:

    <configuration>
        <property>
            <name>dfs.replication</name>
            <value>1</value>
        </property>
    </configuration>
    

    Setup passphraseless ssh

    Now check that you can ssh to the localhost without a passphrase:

      $ ssh localhost
    

    If you cannot ssh to localhost without a passphrase, execute the following commands:

      $ ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
      $ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
      $ chmod 0600 ~/.ssh/authorized_keys
    

    Execution

    The following instructions are to run a MapReduce job locally. If you want to execute a job on YARN, see YARN on Single Node.

    1. Format the filesystem:

        $ bin/hdfs namenode -format
      
    2. Start NameNode daemon and DataNode daemon:

        $ sbin/start-dfs.sh
      

      The hadoop daemon log output is written to the $HADOOP_LOG_DIR directory (defaults to $HADOOP_HOME/logs).

    3. Browse the web interface for the NameNode; by default it is available at:

      • NameNode - http://localhost:50070/
    4. Make the HDFS directories required to execute MapReduce jobs:

        $ bin/hdfs dfs -mkdir /user
        $ bin/hdfs dfs -mkdir /user/<username>
      
    5. Copy the input files into the distributed filesystem:

        $ bin/hdfs dfs -put etc/hadoop input
      
    6. Run some of the examples provided:

        $ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar grep input output 'dfs[a-z.]+'
      
    7. Examine the output files: Copy the output files from the distributed filesystem to the local filesystem and examine them:

        $ bin/hdfs dfs -get output output
        $ cat output/*
      

      or

      View the output files on the distributed filesystem:

        $ bin/hdfs dfs -cat output/*
      
    8. When you’re done, stop the daemons with:

        $ sbin/stop-dfs.sh
      

    YARN on a Single Node

    You can run a MapReduce job on YARN in a pseudo-distributed mode by setting a few parameters and running ResourceManager daemon and NodeManager daemon in addition.

    The following instructions assume that 1. ~ 4. steps of the above instructions are already executed.

    1. Configure parameters as follows:etc/hadoop/mapred-site.xml:

      <configuration>
          <property>
              <name>mapreduce.framework.name</name>
              <value>yarn</value>
          </property>
      </configuration>
      

      etc/hadoop/yarn-site.xml:

      <configuration>
          <property>
              <name>yarn.nodemanager.aux-services</name>
              <value>mapreduce_shuffle</value>
          </property>
      </configuration>
      
    2. Start ResourceManager daemon and NodeManager daemon:

        $ sbin/start-yarn.sh
      
    3. Browse the web interface for the ResourceManager; by default it is available at:

      • ResourceManager - http://localhost:8088/
    4. Run a MapReduce job.

    5. When you’re done, stop the daemons with:

        $ sbin/stop-yarn.sh

      配置免密码,否则运行的时候会报错。

      Setup passphraseless ssh

      Now check that you can ssh to the localhost without a passphrase:

        $ ssh localhost
      

      If you cannot ssh to localhost without a passphrase, execute the following commands:

        $ ssh-keygen -t rsa -P '' -f ~/.ssh/id_rsa
        $ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
        $ chmod 0600 ~/.ssh/authorized_keys

      Hadoop配置文件具体的配置信息如下:

      1. vim etc/hadoop/hadoop-env.sh

      #export JAVA_HOME=${JAVA_HOME}
      export JAVA_HOME=/home/spark/jdk1.8.0_121

      2. vim etc/hadoop/core-site.xml

      <!-- Put site-specific property overrides in this file. -->

      <configuration>
      <property>
      <name>fs.defaultFS</name>
      <value>hdfs://spark01:9000</value>
      </property>
      <property>
      <name>hadoop.tmp.dir</name>
      <value>/home/spark/hadoopdata</value>
      </property>
      </configuration>

      3. vim etc/hadoop/hdfs-site.xml

      <configuration>
      <property>
      <name>dfs.replication</name>
      <value>1</value>
      </property>
      </configuration>

      4. vim etc/hadoop/mapred-site.xml

      <configuration>
      <property>
      <name>mapreduce.framework.name</name>
      <value>yarn</value>
      </property>
      </configuration>

       
      5.vim etc/hadoop/yarn-site.xml

      <configuration>

      <!-- Site specific YARN configuration properties -->
      <property>
      <name>yarn.nodemanager.aux-services</name>
      <value>mapreduce_shuffle</value>
      </property>
      <property>
      <name>yarn.log-aggregation-enable</name>
      <value>true</value>
      </property>
      </configuration>

       
      1. 对HDFS进行格式化
       
      hdfs namenode -format
       

      2.启动HDFS

      start-dfs.sh

      3. 启动YARN

      start-yarn.sh

      CentOS 7.2关闭防火墙

      CentOS 7.0默认使用的是firewall作为防火墙,这里改为iptables防火墙步骤。

      firewall-cmd --state #查看默认防火墙状态(关闭后显示notrunning,开启后显示running)

      1
      2
      3
      [root@localhost ~]#firewall-cmd --state
       
      not running

       检查防火墙的状态:

      从centos7开始使用systemctl来管理服务和程序,包括了service和chkconfig。

      1
      2
      3
      [root@localhost ~]#systemctl list-unit-files|grep firewalld.service      --防火墙处于关闭状态
       
      firewalld.service              disabled

      或者

      1
      2
      3
      4
      5
      6
      7
      [root@localhost ~]#systemctl status firewalld.service
       
      firewalld.service - firewalld - dynamic firewall daemon
       
        Loaded: loaded (/usr/lib/systemd/system/firewalld.service; disabled; vendor preset: enabled)
       
        Active: inactive (dead)

       关闭防火墙:

      systemctl stop firewalld.service #停止firewall
      systemctl disable firewalld.service #禁止firewall开机启动

      1
      2
      3
      [root@localhost ~]#systemctl stop firewalld.service
       
      [root@localhost ~]#systemctl disable firewalld.service
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      11
      12
      13
      14
      15
      启动一个服务:systemctl start firewalld.service
       
      关闭一个服务:systemctl stop firewalld.service
       
      重启一个服务:systemctl restart firewalld.service
       
      显示一个服务的状态:systemctl status firewalld.service
       
      在开机时启用一个服务:systemctl enable firewalld.service
       
      在开机时禁用一个服务:systemctl disable firewalld.service
       
      查看服务是否开机启动:systemctl is-enabled firewalld.service;echo $?
       
      查看已启动的服务列表:systemctl list-unit-files|grep enabled

      Centos 7 firewall 命令:

      查看已经开放的端口:

      1
      firewall-cmd --list-ports

      开启端口

      1
      firewall-cmd --zone=public --add-port=80/tcp --permanent

      命令含义:

      –zone #作用域

      –add-port=80/tcp #添加端口,格式为:端口/通讯协议

      –permanent #永久生效,没有此参数重启后失效

      重启防火墙

      1
      2
      3
      4
      firewall-cmd --reload #重启firewall
      systemctl stop firewalld.service #停止firewall
      systemctl disable firewalld.service #禁止firewall开机启动
      firewall-cmd --state #查看默认防火墙状态(关闭后显示notrunning,开启后显示running)

      1. 启动防火墙(Firewalld):

      sudo systemctl start firewalld.service

      2. 查看防火墙(Firewalld)运行状态:

      sudo systemctl status firewalld.service

      3. 配置防火墙(Firewalld)访问规则,打开8088(YARN)和50070(HDFS)两个端口:

      sudo firewall-cmd --zone=public --add-port=8088/tcp --permanent

      sudo firewall-cmd --zone=public --add-port=50070/tcp --permanent

      4. 载入防火墙(Firewalld)规则:

      sudo firewall-cmd --reload

      5. 重新启动防火墙(Firewalld):

      sudo systemctl restart firewalld.service

      6. 验证防火墙(Firewalld)生效:

      http://spark02:8080

      http://spark02:50070

       

       http://spark02:8088

      http://spark02:50070

      使用HDFS创建目录,拷贝文件和查看文件

      hdfs dfs -mkdir hdfs://user/jonson/input
      hdfs dfs -cp etc/hadoop hdfs://user/jonson/input
      hdfs dfs -ls hdfs://user/jonson/input
      hdfs dfs -mkdir hdfs://user/jonson/output
      hdfs dfs -rmdir hdfs://user/jonson/output
      hdfs dfs -ls hdfs://user/jonson
       
      尝试使用MapReduce计算框架
       
      [spark@Spark02 hadoop-2.7.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar grep hdfs:///user/jonson/input/hadoop hdfs:///user/jonson/output 'dfs[a-z.]+'
       

      [spark@Spark02 hadoop-2.7.3]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar grep hdfs:///user/jonson/input/hadoop hdfs:///user/jonson/output 'dfs[a-z.]+'
      17/05/07 23:36:17 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
      17/05/07 23:36:18 INFO input.FileInputFormat: Total input paths to process : 30
      17/05/07 23:36:18 INFO mapreduce.JobSubmitter: number of splits:30
      17/05/07 23:36:19 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1494169715431_0003
      17/05/07 23:36:19 INFO impl.YarnClientImpl: Submitted application application_1494169715431_0003
      17/05/07 23:36:19 INFO mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1494169715431_0003/
      17/05/07 23:36:19 INFO mapreduce.Job: Running job: job_1494169715431_0003
      17/05/07 23:36:28 INFO mapreduce.Job: Job job_1494169715431_0003 running in uber mode : false
      17/05/07 23:36:28 INFO mapreduce.Job: map 0% reduce 0%
      17/05/07 23:36:58 INFO mapreduce.Job: map 20% reduce 0%
      17/05/07 23:37:25 INFO mapreduce.Job: map 37% reduce 0%
      17/05/07 23:37:26 INFO mapreduce.Job: map 40% reduce 0%
      17/05/07 23:37:50 INFO mapreduce.Job: map 47% reduce 0%
      17/05/07 23:37:51 INFO mapreduce.Job: map 57% reduce 0%
      17/05/07 23:37:54 INFO mapreduce.Job: map 57% reduce 19%
      17/05/07 23:38:04 INFO mapreduce.Job: map 60% reduce 19%
      17/05/07 23:38:06 INFO mapreduce.Job: map 60% reduce 20%
      17/05/07 23:38:12 INFO mapreduce.Job: map 73% reduce 20%
      17/05/07 23:38:15 INFO mapreduce.Job: map 73% reduce 24%
      17/05/07 23:38:18 INFO mapreduce.Job: map 77% reduce 24%
      17/05/07 23:38:21 INFO mapreduce.Job: map 77% reduce 26%
      17/05/07 23:38:33 INFO mapreduce.Job: map 83% reduce 26%
      17/05/07 23:38:34 INFO mapreduce.Job: map 90% reduce 26%
      17/05/07 23:38:35 INFO mapreduce.Job: map 93% reduce 26%
      17/05/07 23:38:36 INFO mapreduce.Job: map 93% reduce 31%
      17/05/07 23:38:43 INFO mapreduce.Job: map 100% reduce 31%
      17/05/07 23:38:44 INFO mapreduce.Job: map 100% reduce 100%
      17/05/07 23:38:45 INFO mapreduce.Job: Job job_1494169715431_0003 completed successfully
      17/05/07 23:38:45 INFO mapreduce.Job: Counters: 49
      File System Counters
      FILE: Number of bytes read=345
      FILE: Number of bytes written=3690573
      FILE: Number of read operations=0
      FILE: Number of large read operations=0
      FILE: Number of write operations=0
      HDFS: Number of bytes read=81841
      HDFS: Number of bytes written=437
      HDFS: Number of read operations=93
      HDFS: Number of large read operations=0
      HDFS: Number of write operations=2
      Job Counters
      Launched map tasks=30
      Launched reduce tasks=1
      Data-local map tasks=30
      Total time spent by all maps in occupied slots (ms)=653035
      Total time spent by all reduces in occupied slots (ms)=77840
      Total time spent by all map tasks (ms)=653035
      Total time spent by all reduce tasks (ms)=77840
      Total vcore-milliseconds taken by all map tasks=653035
      Total vcore-milliseconds taken by all reduce tasks=77840
      Total megabyte-milliseconds taken by all map tasks=668707840
      Total megabyte-milliseconds taken by all reduce tasks=79708160
      Map-Reduce Framework
      Map input records=2103
      Map output records=24
      Map output bytes=590
      Map output materialized bytes=519
      Input split bytes=3804
      Combine input records=24
      Combine output records=13
      Reduce input groups=11
      Reduce shuffle bytes=519
      Reduce input records=13
      Reduce output records=11
      Spilled Records=26
      Shuffled Maps =30
      Failed Shuffles=0
      Merged Map outputs=30
      GC time elapsed (ms)=8250
      CPU time spent (ms)=13990
      Physical memory (bytes) snapshot=6025490432
      Virtual memory (bytes) snapshot=64352063488
      Total committed heap usage (bytes)=4090552320
      Shuffle Errors
      BAD_ID=0
      CONNECTION=0
      IO_ERROR=0
      WRONG_LENGTH=0
      WRONG_MAP=0
      WRONG_REDUCE=0
      File Input Format Counters
      Bytes Read=78037
      File Output Format Counters
      Bytes Written=437
      17/05/07 23:38:45 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
      17/05/07 23:38:46 INFO input.FileInputFormat: Total input paths to process : 1
      17/05/07 23:38:46 INFO mapreduce.JobSubmitter: number of splits:1
      17/05/07 23:38:46 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1494169715431_0004
      17/05/07 23:38:46 INFO impl.YarnClientImpl: Submitted application application_1494169715431_0004
      17/05/07 23:38:46 INFO mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1494169715431_0004/
      17/05/07 23:38:46 INFO mapreduce.Job: Running job: job_1494169715431_0004
      17/05/07 23:39:00 INFO mapreduce.Job: Job job_1494169715431_0004 running in uber mode : false
      17/05/07 23:39:00 INFO mapreduce.Job: map 0% reduce 0%
      17/05/07 23:39:06 INFO mapreduce.Job: map 100% reduce 0%
      17/05/07 23:39:13 INFO mapreduce.Job: map 100% reduce 100%
      17/05/07 23:39:14 INFO mapreduce.Job: Job job_1494169715431_0004 completed successfully
      17/05/07 23:39:14 INFO mapreduce.Job: Counters: 49
      File System Counters
      FILE: Number of bytes read=291
      FILE: Number of bytes written=237535
      FILE: Number of read operations=0
      FILE: Number of large read operations=0
      FILE: Number of write operations=0
      HDFS: Number of bytes read=566
      HDFS: Number of bytes written=197
      HDFS: Number of read operations=7
      HDFS: Number of large read operations=0
      HDFS: Number of write operations=2
      Job Counters
      Launched map tasks=1
      Launched reduce tasks=1
      Data-local map tasks=1
      Total time spent by all maps in occupied slots (ms)=3838
      Total time spent by all reduces in occupied slots (ms)=3849
      Total time spent by all map tasks (ms)=3838
      Total time spent by all reduce tasks (ms)=3849
      Total vcore-milliseconds taken by all map tasks=3838
      Total vcore-milliseconds taken by all reduce tasks=3849
      Total megabyte-milliseconds taken by all map tasks=3930112
      Total megabyte-milliseconds taken by all reduce tasks=3941376
      Map-Reduce Framework
      Map input records=11
      Map output records=11
      Map output bytes=263
      Map output materialized bytes=291
      Input split bytes=129
      Combine input records=0
      Combine output records=0
      Reduce input groups=5
      Reduce shuffle bytes=291
      Reduce input records=11
      Reduce output records=11
      Spilled Records=22
      Shuffled Maps =1
      Failed Shuffles=0
      Merged Map outputs=1
      GC time elapsed (ms)=143
      CPU time spent (ms)=980
      Physical memory (bytes) snapshot=306675712
      Virtual memory (bytes) snapshot=4157272064
      Total committed heap usage (bytes)=165810176
      Shuffle Errors
      BAD_ID=0
      CONNECTION=0
      IO_ERROR=0
      WRONG_LENGTH=0
      WRONG_MAP=0
      WRONG_REDUCE=0
      File Input Format Counters
      Bytes Read=437
      File Output Format Counters
      Bytes Written=197

       

       

      利用命令行来查看运行结果:

      [spark@Spark02 hadoop-2.7.3]$ hadoop fs -cat hdfs:///user/jonson/output/*
      6 dfs.audit.logger
      4 dfs.class
      3 dfs.server.namenode.
      2 dfs.period
      2 dfs.audit.log.maxfilesize
      2 dfs.audit.log.maxbackupindex
      1 dfsmetrics.log
      1 dfsadmin
      1 dfs.servers
      1 dfs.replication
      1 dfs.file
      [spark@Spark02 hadoop-2.7.3]$ hadoop fs -cat hdfs:///user/jonson/output/part-r-00000
      6 dfs.audit.logger
      4 dfs.class
      3 dfs.server.namenode.
      2 dfs.period
      2 dfs.audit.log.maxfilesize
      2 dfs.audit.log.maxbackupindex
      1 dfsmetrics.log
      1 dfsadmin
      1 dfs.servers
      1 dfs.replication
      1 dfs.file

      ====================================

      免密码登录原理和方法

      背景:搭建Hadoop环境需要设置无密码登陆,所谓无密码登陆其实是指通过证书认证的方式登陆,使用一种被称为"公私钥"认证的方式来进行ssh登录。

         在linux系统中,ssh是远程登录的默认工具,因为该工具的协议使用了RSA/DSA的加密算法.该工具做linux系统的远程管理是非常安全的。telnet,因为其不安全性,在linux系统中被搁置使用了。

        " 公私钥"认证方式简单的解释:首先在客户端上创建一对公私钥 (公钥文件:~/.ssh/id_rsa.pub; 私钥文件:~/.ssh/id_rsa)。然后把公钥放到服务器上(~/.ssh/authorized_keys), 自己保留好私钥.在使用ssh登录时,ssh程序会发送私钥去和服务器上的公钥做匹配.如果匹配成功就可以登录了。

      工具/原料

       
      • linux系统

      方法/步骤

       
      1.  

        确认系统已经安装了SSH。

        rpm –qa | grep openssh

        rpm –qa | grep rsync

             -->出现如下图的信息表示已安装

        假设没有安装ssh和rsync,可以通过下面命令进行安装。

        yum install ssh -->安装SSH协议

        yum install rsync -->rsync是一个远程数据同步工具,可通过LAN/WAN快速同步多台主机间的文件

        service sshd restart -->启动服务

        菜鸟Linux系列:[4]SSH免密码登陆远程服务器
      2.  

        生成秘钥对

        ssh-keygen –t rsa –P ''  -->直接回车生成的密钥对:id_rsa和id_rsa.pub,默认存储在"/home/hadoop/.ssh"目录下。

        菜鸟Linux系列:[4]SSH免密码登陆远程服务器
        菜鸟Linux系列:[4]SSH免密码登陆远程服务器
      3.  

        把id_rsa.pub追加到授权的key里面去。

        cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

        菜鸟Linux系列:[4]SSH免密码登陆远程服务器
      4.  

        修改授权key的权限

        chmod 600 ~/.ssh/authorized_keys

        菜鸟Linux系列:[4]SSH免密码登陆远程服务器
      5.  

        修改SSH配置文件

        su -  -->登陆root用户修改配置文件

        vim /etc/ssh/sshd_config -->去掉下图中三行的注释

        菜鸟Linux系列:[4]SSH免密码登陆远程服务器
      6.  

        测试连接

        service sshd restart -->重启ssh服务,

        exit   -->退出root用户,回到普通用户

        ssh localhost -->连接普通用户测试

        这只是配置好了单机环境上的SSH服务,要远程连接其它的服务器,接着看下面。

        菜鸟Linux系列:[4]SSH免密码登陆远程服务器
      7.  

        现在秘钥对已经生成好了,客户端SSH服务也已经配置好了,现在就把我们的钥匙(公钥)送给服务器。

        scp ~/.ssh/id_rsa.pub 远程用户名@远程服务器IP:~/  -->将公钥复制到远程服务器的~/目录下

        如: scp ~/.ssh/id_rsa.pub hadoop@192.168.1.134:~/

        可以看到我们复制的时候需要我们输入服务器的密码,等我们把SSH配置好之后这些步骤就可以不用输入密码了。

        菜鸟Linux系列:[4]SSH免密码登陆远程服务器
      8. 8

        上一步把公钥发送到192.168.1.134服务器上去了,我们去134机器上把公钥追加到授权key中去。(注意:如果是第一次运行SSH,那么.ssh目录需要手动创建,或者使用命令ssh-keygen -t rsa生成秘钥,它会自动在用户目录下生成.ssh目录。特别注意的是.ssh目录的权限问题,记得运行下chmod 700 .ssh命令)

        在134机器上使用命令:

        cat ~/id_rsa.pub >> ~/.ssh/authorized_keys  -->追加公钥到授权key中

        rm ~/id_rsa.pub  -->保险起见,删除公钥

        同样在134机器上重复第四步和第五步,

        service sshd restart  -->重启ssh服务

      9. 9

        回到客户机来,输入:

        ssh 192.168.1.134   -->应该就能直接连接服务器咯。

       
       
       
  • 相关阅读:
    jquery事件之事件委托和事件切换
    jquery事件之事件处理函数
    jquery动画效果
    jquery筛选元素函数
    jquery操作DOM
    jquery对css操作
    jquery属性操作
    Jquery选择器(三)
    Jquery选择器(二)
    Jquery选择器(一)
  • 原文地址:https://www.cnblogs.com/licheng/p/6822544.html
Copyright © 2011-2022 走看看