C++ 拷贝构造函数 赋值构造函数
拷贝构造函数和赋值构造函数的异同
由于并非所有的对象都会使用拷贝构造函数和赋值函数,程序员可能对这两个函数有些轻视。请先记住以下的警告,在阅读正文时就会多心:如果不主动编写拷贝构造函数和赋值函数,编译器将以“位拷贝”的方式自动生成缺省的函数。倘若类中含有指针变量,那么这两个缺省的函数就隐含了错误。
以类String 的两个对象a,b 为例,
Class String
{
public:
String(constchar*ch=NULL);//默认构造函数
String(constString&str);//拷贝构造函数
~String(void);
String&operator=(constString&str);//赋值函数
private:
char*m_data;
};
位拷贝拷贝的是地址,而值拷贝则拷贝的是内容。如果定义两个String对象A和B。A.m_data和B.m_data分别指向一段区域,A.m_data="windows",B.m_data=“linux";
如果未重写赋值函数,将B赋给A;则编译器会默认进行位拷贝,A.m_data=B.m_data
则A.m_data和B.m_data指向同一块区域,虽然A.m_data指向的内容会改变成"linux",但是这样容易出现这些问题:
(1):A.m_data原来指向的内存区域未释放,造成内存泄露。
(2):A.m_data和B.m_data指向同一块区域,任何一方改变都会影响另一方
(3):当对象被析构时,B.m_data被释放两次。
对于编译器,如果不主动编写拷贝函数和赋值函数,它会以“位拷贝”的方式自动生成缺省的函数。
拷贝构造函数和赋值函数非常容易混淆,常导致错写、错用。拷贝构造函数是在对象被创建时调用的,而赋值函数只能被已经存在了的对象调用。以下程序中,第三个语句和第四个语句很相似,你分得清楚哪个调用了拷贝构造函数,哪个调用了赋值函数吗?
String a(“hello”);
String b(“world”);
String c = a; // 调用了拷贝构造函数,最好写成 c(a);
c = b; // 调用了赋值函数
本例中第三个语句的风格较差,宜改写成String c(a) 以区别于第四个语句。
类String 的拷贝构造函数与赋值函数
// 拷贝构造函数
String::String(const String &other)
{
// 允许操作other 的私有成员m_data
int length = strlen(other.m_data);
m_data = new char[length+1];
strcpy(m_data, other.m_data);
}
// 赋值函数
String & String::operator =(const String &other)
{
// (1) 检查自赋值
if(this == &other)
return *this;
// (2) 释放原有的内存资源
delete [] m_data;
// (3)分配新的内存资源,并复制内容
int length = strlen(other.m_data);
m_data = new char[length+1];
strcpy(m_data, other.m_data);
// (4)返回本对象的引用
return *this;
}
类String 拷贝构造函数与普通构造函数的区别是:在函数入口处无需与NULL 进行比较,这是因为“引用”不可能是NULL,而“指针”可以为NULL。类String 的赋值函数比构造函数复杂得多,分四步实现:
(1)第一步,检查自赋值。你可能会认为多此一举,难道有人会愚蠢到写出 a = a 这样的自赋值语句!的确不会。但是间接的自赋值仍有可能出现,例如
// 内容自赋值
b = a;
…
c = b;
…
a = c;
// 地址自赋值
b = &a;
…
a = *b;
也许有人会说:“即使出现自赋值,我也可以不理睬,大不了化点时间让对象复制自己而已,反正不会出错!”他真的说错了。看看第二步的delete,自杀后还能复制自己吗?所以,如果发现自赋值,应该马上终止函数。注意不要将检查自赋值的if 语句
if(this == &other)
错写成为
if( *this == other)
(2)第二步,用delete 释放原有的内存资源。如果现在不释放,以后就没机会了,将造成内存泄露。
(3)第三步,分配新的内存资源,并复制字符串。注意函数strlen 返回的是有效字符串长度,不包含结束符‘\0’。函数strcpy 则连‘\0’一起复制。
(4)第四步,返回本对象的引用,目的是为了实现象 a = b = c 这样的链式表达。注意不要将 return *this 错写成 return this 。那么能否写成return other 呢?效果不是一样吗?不可以!因为我们不知道参数other 的生命期。有可能other 是个临时对象,在赋值结束后它马上消失,那么return other 返回的将是垃圾。
偷懒的办法处理拷贝构造函数与赋值函数
如果我们实在不想编写拷贝构造函数和赋值函数,又不允许别人使用编译器生成的缺省函数,怎么办?
偷懒的办法是:只需将拷贝构造函数和赋值函数声明为私有函数,不用编写代码。
例如:
class A
{ …
private:
A(const A &a); // 私有的拷贝构造函数
A & operator =(const A &a); // 私有的赋值函数
};
如果有人试图编写如下程序:
A b(a); // 调用了私有的拷贝构造函数
b = a; // 调用了私有的赋值函数
编译器将指出错误,因为外界不可以操作A 的私有函数。
一、
拷贝构造,是一个的对象来初始化一边内存区域,这边内存区域就是你的新对象的内存区域赋值运算,对于一个已经被初始化的对象来进行operator=操作
class A;
A a;
A b=a; //拷贝构造函数调用
//或
A b(a); //拷贝构造函数调用
///
A a;
A b;
b =a; //赋值运算符调用
你只需要记住,在C++语言里,
String s2(s1);
String s3 = s1;
只是语法形式的不同,意义是一样的,都是定义加初始化,都调用拷贝构造函数。
二、
一般来说是在数据成员包含指针对象的时候,应付两种不同的处理需求的 一种是复制指针对象,一种是引用指针对象 copy大多数情况下是复制,=则是引用对象的
例子:
class A
{
int nLen;
char * pData;
}
显然
A a, b;
a=b的时候,对于pData数据存在两种需求
第一种copy
a.pData = new char [nLen];
memcpy(a.pData, b.pData, nLen);
另外一种(引用方式):
a.pData = b.pData
通过对比就可以看到,他们是不同的
往往把第一种用copy使用,第二种用=实现
你只要记住拷贝构造函数是用于类中指针,对象间的COPY
三、
和拷贝构造函数的实现不一样
拷贝构造函数首先是一个构造函数,它调用的时候产生一个对象,是通过参数传进来的那个对象来初始化,产生的对象。
operator=();是把一个对象赋值给一个原有的对象,所以如果原来的对象中有内存分配要先把内存释放掉,而且还要检查一下两个对象是不是同一个对象,如果是的话就不做任何操作。
还要注意的是拷贝构造函数是构造函数,不返回值
而赋值函数需要返回一个对象自身的引用,以便赋值之后的操作
你肯定知道这个:
int a, b;
b = 7;
Func( a = b ); // 把i赋值后传给函数Func( int )
同理:
CMyClass obj1, obj2;
obj1.Initialize();
Func2( obj1 = obj2 ); //如果没有返回引用,是不能把值传给Func2的
注:
CMyClass & CMyClass:: operator = ( CMyClass & other )
{
if( this == &other )
return *this;
// 赋值操作...
return *this
}
==================================================================================
赋值运算符和复制构造函数都是用已存在的B对象来创建另一个对象A。不同之处在于:赋值运算符处理两个已有对象,即赋值前B应该是存在的;复制构造函数是生成一个全新的对象,即调用复制构造函数之前A不存在。
CTemp a(b); //复制构造函数,C++风格的初始化
CTemp a=b; //仍然是复制构造函数,不过这种风格只是为了与C兼容,与上面的效果一样,在这之前a不存在,或者说还未构造好。
CTemp a;
a=b; //赋值运算符
在这之前a已经通过默认构造函数构造完成。
实例总结:
重点:包含动态分配成员的类 应提供拷贝构造函数,并重载"="赋值操作符。
以下讨论中将用到的例子:
class CExample
{
public:
CExample(){pBuffer=NULL; nSize=0;}
~CExample(){delete pBuffer;}
void Init(int n){ pBuffer=new char[n]; nSize=n;}
private:
char *pBuffer; //类的对象中包含指针,指向动态分配的内存资源
int nSize;
};
这个类的主要特点是包含指向其他资源的指针。
pBuffer指向堆中分配的一段内存空间。
一、拷贝构造函数
调用拷贝构造函数1
int main(int argc, char* argv[])
{
CExample theObjone;
theObjone.Init(40);
//现在需要另一个对象,需要将他初始化称对象一的状态
CExample theObjtwo=theObjone;//拷贝构造函数
...
}
语句"CExample theObjtwo=theObjone;"用theObjone初始化theObjtwo。
其完成方式是内存拷贝,复制所有成员的值。
完成后,theObjtwo.pBuffer==theObjone.pBuffer。
即它们将指向同样的地方(地址空间),指针虽然复制了,但所指向的空间内容并没有复制,而是由两个对象共用了。这样不符合要求,对象之间不独立了,并为空间的删除带来隐患。
所以需要采用必要的手段来避免此类情况。
回顾以下此语句的具体过程:通过拷贝构造函数(系统默认的)创建新对象theObjtwo,并没有调用theObjtwo的构造函数(vs2005试验过)。
可以在自定义的拷贝构造函数中添加输出的语句测试。
注意:
对于含有在自由空间分配的成员时,要使用深度复制,不应使用浅复制。
调用拷贝构造函数2
当对象直接作为参数传给函数时,函数将建立对象的临时拷贝,这个拷贝过程也将调同拷贝构造函数。
例如
BOOL testfunc(CExample obj);
testfunc(theObjone); //对象直接作为参数。
BOOL testfunc(CExample obj)
{
//针对obj的操作实际上是针对复制后的临时拷贝进行的
}
调用拷贝构造函数3
当函数中的局部对象被被返回给函数调者时,也将建立此局部对象的一个临时拷贝,拷贝构造函数也将被调用
CTest func()
{
CTest theTest;
return theTest
}
二、赋值符的重载
下面的代码与上例相似
int main(int argc, char* argv[])
{
CExample theObjone;
theObjone.Init(40);
CExample theObjthree;
theObjthree.Init(60);
//现在需要一个对象赋值操作,被赋值对象的原内容被清除,并用右边对象的内容填充。
theObjthree=theObjone;
return 0;
}
也用到了"="号,但与"一、"中的例子并不同,"一、"的例子中,"="在对象声明语句中,表示初始化。更多时候,这种初始化也可用括号表示。
例如 CExample theObjone(theObjtwo);
而本例子中,"="表示赋值操作。将对象theObjone的内容复制到对象theObjthree;,这其中涉及到对象theObjthree原有内容的丢弃,新内容的复制。
但"="的缺省操作只是将成员变量的值相应复制。旧的值被自然丢弃。
由于对象内包含指针,将造成不良后果:为了避免内存泄露,指针成员将释放指针所指向的空间,以便接受新的指针值,这正是由赋值运算符的特征所决定的。但如果是"x=x"即自己给自己赋值,会出现什么情况呢?x将释放分配给自己的内存,然后,从赋值运算符右边指向的内存中复制值时,发现值不见了。
因此,包含动态分配成员的类除提供拷贝构造函数外,还应该考虑重载"="赋值操作符号。
类定义变为:
class CExample
{
...
CExample(const CExample&); //拷贝构造函数
CExample& operator = (const CExample&); //赋值符重载
...
};
//赋值操作符重载
CExample & CExample::operator = (const CExample& RightSides)
{
nSize=RightSides.nSize; //复制常规成员
char *temp=new char[nSize]; //复制指针指向的内容
memcpy(temp, RightSides.pBuffer, nSize*sizeof(char));
delete []pBuffer; //删除原指针指向内容 (将删除操作放在后面,避免X=X特殊情况下,内容的丢失)
pBuffer=temp; //建立新指向
return *this
}
三、拷贝构造函数使用赋值运算符重载的代码。
CExample::CExample(const CExample& RightSides)
{
pBuffer=NULL;
*this=RightSides //调用重载后的"="
}
最后来一个完整的例子
#include<iostream>
#include<cwchar>
#include<windows.h>
#include<vector>
#include<string>
#include <fstream>
using namespace std;
class CExample
{
public:
CExample()
{
cout << "构造函数被调用!!!" << endl;
pBuffer = NULL;
nSize = 0;
}
CExample(char *p)
{
cout << "带参数构造函数被调用!!!" << endl;
pBuffer = NULL;
//
pBuffer = p;
nSize = strlen(p);
}
~CExample()
{
cout << "析构函数被调用!!!" << endl;
}
void Print()
{
cout << nSize << endl;
}
//拷贝构造函数和赋值运算符的写法
CExample(const CExample& test)
{
cout << "拷贝构造函数被调用!!!" << endl;
int length = strlen(test.pBuffer);
pBuffer = new char[length+1];
strcpy(pBuffer, test.pBuffer);
}
CExample& operator =(const CExample& Rightside)
{
cout << "赋值函数被调用!!!" << endl;
//不要返回临时变量的引用或者指针,不要对常量的地址使用delete
// (1) 检查自赋值
if (this == &Rightside)//代表的不是引用,代表的是地址
return *this;
// (2) 释放原有的内存资源
delete pBuffer;
pBuffer = NULL;
// (3)分配新的内存资源,并复制内容
int length = strlen(Rightside.pBuffer);
pBuffer = new char[length + 1];
strcpy(pBuffer, Rightside.pBuffer);
// (4)返回本对象的引用
return *this;
}
private:
char *pBuffer; //类的对象中包含指针,指向动态分配的内存资源
int nSize;
};
int main()
{
{
char *w = new char[8];//之所以这样进行转化,是因为,在重载=运算符的时候,
//要进行delete原来的指针,所以传进来的得是new出来的
strcpy(w,"windows");
CExample theObjone(w);
char *w1 = new char[6];
strcpy(w1, "linux");
CExample theObjthree(w1);
//现在需要另一个对象,需要将他初始化称对象一的状态
CExample theObjtwo = theObjone;//拷贝构造函数
cout << "theObjtwo.Print()!!!" << endl;
theObjtwo.Print();
theObjthree = theObjone;
cout << "theObjthree.Print()!!!" << endl;
theObjthree.Print();
}
cout << "作用域结束!!!" << endl;
while (1);
return 0;
}