zoukankan      html  css  js  c++  java
  • HDU 1028 Ignatius and the Princess III(母函数)

    Ignatius and the Princess III

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 5568    Accepted Submission(s): 3925

    Problem Description

    "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

    "The second problem is, given an positive integer N, we define an equation like this:
      N=a[1]+a[2]+a[3]+...+a[m];
      a[i]>0,1<=m<=N;
    My question is how many different equations you can find for a given N.
    For example, assume N is 4, we can find:
      4 = 4;
      4 = 3 + 1;
      4 = 2 + 2;
      4 = 2 + 1 + 1;
      4 = 1 + 1 + 1 + 1;
    so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"

    Input

    The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.

    Output

    For each test case, you have to output a line contains an integer P which indicate the different equations you have found.

    Sample Input

    4

    10

    20

    Sample Output

    5

    42

    627

     

     

    Author

    Ignatius.L

     

    解题报告:做这个题的时候以为是找规律的题呢!找了半个多小时的规律也没有找出!哎最后问了队友才知道这题得利用母函数的知识解决,于是在网上找了关于母函数的模板!

    将整数拆分问题转化为求多项式相乘后的系数!

    代码如下:

    #include <iostream>

    #include <cstdio>

    #include <cstring>

    using namespace std;

    const int N=10010;

    //c1数组保存各项组合的数目c2数组是中间变量保存每一次的情况

    int c1[N],c2[N];

    int main()

    {

        int n,i,j,k;

        while(scanf("%d",&n)!=EOF)

        {

            for(i=0;i<=n;i++)//因为是第一个表达式(1+x+x2+..xn)所以c1数组初始化为1,

            {

                c1[i]=1;

                c2[i]=0;

            }

            for(i=2;i<=n;i++)//从2遍历,求每一个表达式

            {

                //j 从0到n遍历,这里j就是(前面i个表达式累乘的表达式)里第j个变量

                for(j=0;j<=n;j++)

                {

                    for(k=0;k+j<=n;k=k+i)//k表示的是第j个指数,因为第i个表达式的增量是i,所以k每次增i

                    {

                        c2[k+j]=c2[k+j]+c1[j];

                    }

                }

                for(j=0;j<=n;j++)

                {

                    c1[j]=c2[j];//因为c2每次是从一个表达式中开始的,把c2的值赋给c1,而把c2初始化为0.

                    c2[j]=0;

                }

            }

            printf("%d\n",c1[n]);//X的n次方的系数即为所求

        }

        return 0;

    }

  • 相关阅读:
    hdu4639 hehe ——斐波纳契数列,找规律
    codefoces round193a
    codeforces 192e
    abbyy cup a
    年中总结
    codeforces 192a
    codeforces 192b
    codeforces 192 c
    codeforces 192 D
    codeforces magic five --快速幂模
  • 原文地址:https://www.cnblogs.com/lidaojian/p/2264629.html
Copyright © 2011-2022 走看看