zoukankan      html  css  js  c++  java
  • HDU 2372 ||SDUT 2384 El Dorado(动态规划)

    El Dorado

    Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 304    Accepted Submission(s): 153

    Problem Description

    Bruce Force has gone to Las Vegas, the El Dorado for gamblers. He is interested especially in one betting game, where a machine forms a sequence of n numbers by drawing random numbers. Each player should estimate beforehand, how many increasing subsequences of length k will exist in the sequence of numbers. 


    Bruce doesn't trust the Casino to count the number of increasing subsequences of length k correctly. He has asked you if you can solve this problem for him.

     

    Input

    The input contains several test cases. The first line of each test case contains two numbers n and k (1 ≤ k ≤ n ≤ 100), where n is the length of the sequence drawn by the machine, and k is the desired length of the increasing subsequences. The following line contains n pairwise distinct integers ai (-10000 ≤ ai ≤ 10000 ), where aiis the ith number in the sequence drawn by the machine. 

    The last test case is followed by a line containing two zeros. 

    Output

    For each test case, print one line with the number of increasing subsequences of length k that the input sequence contains. You may assume that the inputs are chosen in such a way that this number fits into a 64 bit signed integer . 

    Sample Input

    10 5

    1 2 3 4 5 6 7 8 9 10

    3 2

    3 2 1

    0 0

    Sample Output

    252

    0

    Source

    2008水题公开赛(比速度,OJ压力测试)

    Recommend

    lcy

     解题报告:这道题是一道动态规划题,题意就是求递增长度为m的总的个数,状态方程为dp[i][j] += dp[k][j - 1];其中dp[i][j]的含义:到第i个数时递增长度为j的个数;

    代码如下:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    using namespace std;
    const int N = 110;
    __int64 dp[N][N], ans;//dp[i][j]表示到第i个数的时候递增个数为j的个数
    int m, n, a[N];
    void DP()
    {
    int i, j, k;
    memset(dp, 0, sizeof(dp));
    for (i = 1; i <= n; ++i)
    {
    dp[i][1] = 1;
    }
    for (j = 2; j <= m; ++j)//找长度为j的增长序列
    {
    for (i = j; i <= n; ++i)//遍历一次
    {
    for (k = j -1; k < i; ++k)//比较时应该是后面的和前面的作比较k<i作为条件
    {
    if (a[i] > a[k])
    {
    dp[i][j] += dp[k][j - 1];//状态方程dp[i][j]表示第i数时,递增长度为j的个数
    }
    }
    }
    }
    }
    int main()
    {
    int i;
    while (scanf("%d%d", &n, &m) != EOF && n && m)
    {
    memset(a, 0, sizeof(a));
    for (i = 1; i <= n; ++i)
    {
    scanf("%d", &a[i]);
    }
    DP();
    ans = 0;
    for(i = m; i <= n; ++i)
    {
    ans += dp[i][m];//把递增长度为m的序列数全加起来
    }
    printf("%I64d\n", ans);
    }
    return 0;
    }



  • 相关阅读:
    HttpClient 学习整理
    matlab练习程序(感知哈希对比图片)
    matlab练习程序(Floyd–Steinberg dithering)
    matlab练习程序(使用DCT图像增强)
    Win控制台(多线程)
    我的第一个lisp程序
    matlab练习程序(Harris角点检测)
    matlab练习程序(PCA)
    lisp(判断回文数)
    matlab练习程序(透视变换)
  • 原文地址:https://www.cnblogs.com/lidaojian/p/2380894.html
Copyright © 2011-2022 走看看