zoukankan      html  css  js  c++  java
  • poj 3304 Segments(计算几何基础)

     
    Segments
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 11593   Accepted: 3657

    Description

    Given n segments in the two dimensional space, write a program, which determines if there exists a line such that after projecting these segments on it, all projected segments have at least one point in common.

    Input

    Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing a positive integer n ≤ 100 showing the number of segments. After that, n lines containing four real numbers x1 y1 x2 y2 follow, in which (x1, y1) and (x2, y2) are the coordinates of the two endpoints for one of the segments.

    Output

    For each test case, your program must output "Yes!", if a line with desired property exists and must output "No!" otherwise. You must assume that two floating point numbers a and b are equal if |a - b| < 10-8.

    Sample Input

    3
    2
    1.0 2.0 3.0 4.0
    4.0 5.0 6.0 7.0
    3
    0.0 0.0 0.0 1.0
    0.0 1.0 0.0 2.0
    1.0 1.0 2.0 1.0
    3
    0.0 0.0 0.0 1.0
    0.0 2.0 0.0 3.0
    1.0 1.0 2.0 1.0

    Sample Output

    Yes!
    Yes!
    No!

    Source

    【题意】

      给出n条线段两个端点的坐标,问所有线段投影到一条直线上,如果这些所有投影至少相交于一点就输出Yes!,否则输出No!。
    【思路】

      如果有存在这样的直线,过投影相交区域作直线的垂线,该垂线必定与每条线段相交,问题转化为问是否存在一条线和所有线段相交
      若存在一条直线与所有线段相机相交,此时该直线必定经过这些线段的某两个端点,所以枚举任意两个端点即可

    【代码】

     1 #include<cmath>
     2 #include<cstdio>
     3 #include<cstring>
     4 #define FOR(a,b,c) for(int a=(b);a<(c);a++)
     5 using namespace std;
     6 
     7 const int N = 100+10;
     8 const double eps = 1e-8;
     9 
    10 int dcmp(double x) {
    11     if(x<eps) return 0; else return x<0? -1:1;
    12 }
    13 
    14 struct Line {
    15     double x1,y1,x2,y2;
    16 }L[N];
    17 
    18 int n;
    19 
    20 double cross(double x1,double y1,double x2,double y2,double x,double y) {
    21     return (x2-x1)*(y-y1)-(x-x1)*(y2-y1);
    22 }
    23 bool judge(double x1,double y1,double x2,double y2) {
    24     if(!dcmp(x2-x1) && !dcmp(y2-y1)) return 0;
    25     FOR(i,0,n) {
    26         if(cross(x1,y1,x2,y2,L[i].x1,L[i].y1)*
    27             cross(x1,y1,x2,y2,L[i].x2,L[i].y2)>eps) return 0;
    28     }
    29     return 1;
    30 }
    31 
    32 int main() {
    33     int T;
    34     scanf("%d",&T);
    35     while(T--) {
    36         scanf("%d",&n);
    37         FOR(i,0,n) 
    38             scanf("%lf%lf%lf%lf",&L[i].x1,&L[i].y1,&L[i].x2,&L[i].y2);
    39         if(n==1) { puts("Yes!"); continue; }
    40         bool ans=0;
    41         FOR(i,0,n) {
    42             FOR(j,i+1,n) {
    43                 if(judge(L[i].x1,L[i].y1,L[j].x1,L[j].y1)) ans=1;
    44                 if(judge(L[i].x1,L[i].y1,L[j].x2,L[j].y2)) ans=1;
    45                 if(judge(L[i].x2,L[i].y2,L[j].x1,L[j].y1)) ans=1;
    46                 if(judge(L[i].x2,L[i].y2,L[j].x2,L[j].y2)) ans=1;
    47                 if(ans) break;
    48             }
    49             if(ans) break;
    50         }
    51         if(ans) puts("Yes!");
    52         else puts("No!");
    53     }
    54     return 0;
    55 }
  • 相关阅读:
    2013-8-14大一大二暑期组队训练赛
    注重实效的程序员——哲学篇
    读《企业应用架构模式》-锁
    OpenCV 编码样式指南
    Offer_1
    μC/OS学习资料(附Ebook)
    poj 1990
    POJ 2455 网络流 基础题 二分+网络流 dicnic 以及 sap算法
    ViewPageAsImage
    win7下wordPress本地搭建博客详解(深度亲测整理---傻瓜式详细教程)
  • 原文地址:https://www.cnblogs.com/lidaxin/p/5179080.html
Copyright © 2011-2022 走看看