【题意】
给定n个数,要求选出一些数满足
1.存在c,a*a+b*b=c*c
2.gcd(a,b)=1
使得和最大。
【思路】
二分图的最大权独立集(可以这么叫么QAQ
先拆点,对于不满足条件的两个点,连边(u,v’,inf),(v,u’,inf),另外连边(S,u,a[u]),(u,T,a[u])。
求出的最小割为最小亏损的2倍。
【代码】
1 #include<set> 2 #include<cmath> 3 #include<queue> 4 #include<vector> 5 #include<cstdio> 6 #include<cstring> 7 #include<iostream> 8 #include<algorithm> 9 #define trav(u,i) for(int i=front[u];i;i=e[i].nxt) 10 #define FOR(a,b,c) for(int a=(b);a<=(c);a++) 11 using namespace std; 12 13 typedef long long ll; 14 const int N = 4e4+10; 15 const int inf = 1e9; 16 17 ll read() { 18 char c=getchar(); 19 ll f=1,x=0; 20 while(!isdigit(c)) { 21 if(c=='-') f=-1; c=getchar(); 22 } 23 while(isdigit(c)) 24 x=x*10+c-'0',c=getchar(); 25 return x*f; 26 } 27 28 struct Edge { 29 int u,v,cap,flow; 30 }; 31 struct Dinic { 32 int n,m,s,t; 33 int d[N],cur[N],vis[N]; 34 vector<int> g[N]; 35 vector<Edge> es; 36 queue<int> q; 37 void init(int n) { 38 this->n=n; 39 es.clear(); 40 FOR(i,0,n) g[i].clear(); 41 } 42 void AddEdge(int u,int v,int w) { 43 es.push_back((Edge){u,v,w,0}); 44 es.push_back((Edge){v,u,0,0}); 45 m=es.size(); 46 g[u].push_back(m-2); 47 g[v].push_back(m-1); 48 } 49 int bfs() { 50 memset(vis,0,sizeof(vis)); 51 q.push(s); d[s]=0; vis[s]=1; 52 while(!q.empty()) { 53 int u=q.front(); q.pop(); 54 FOR(i,0,(int)g[u].size()-1) { 55 Edge& e=es[g[u][i]]; 56 int v=e.v; 57 if(!vis[v]&&e.cap>e.flow) { 58 vis[v]=1; 59 d[v]=d[u]+1; 60 q.push(v); 61 } 62 } 63 } 64 return vis[t]; 65 } 66 int dfs(int u,int a) { 67 if(u==t||!a) return a; 68 int flow=0,f; 69 for(int& i=cur[u];i<g[u].size();i++) { 70 Edge& e=es[g[u][i]]; 71 int v=e.v; 72 if(d[v]==d[u]+1&&(f=dfs(v,min(a,e.cap-e.flow)))>0) { 73 e.flow+=f; 74 es[g[u][i]^1].flow-=f; 75 flow+=f; a-=f; 76 if(!a) break; 77 } 78 } 79 return flow; 80 } 81 int MaxFlow(int s,int t) { 82 this->s=s,this->t=t; 83 int flow=0; 84 while(bfs()) { 85 memset(cur,0,sizeof(cur)); 86 flow+=dfs(s,inf); 87 } 88 return flow; 89 } 90 } dc; 91 92 int n,a[N]; 93 94 int gcd(int a,int b) 95 { 96 return b==0? a:gcd(b,a%b); 97 } 98 int squ(int a,int b) 99 { 100 ll c=a*a+b*b; 101 return (int)sqrt(c)*(int)sqrt(c)==c; 102 } 103 104 int main() 105 { 106 //freopen("in.in","r",stdin); 107 //freopen("out.out","w",stdout); 108 n=read(); 109 dc.init(n*2+2); 110 int S=0,T=2*n+1,ans=0; 111 FOR(i,1,n) 112 a[i]=read(),ans+=a[i], 113 dc.AddEdge(S,i,a[i]),dc.AddEdge(i+n,T,a[i]); 114 FOR(i,1,n) FOR(j,1,n) { 115 if(gcd(a[i],a[j])==1&&squ(a[i],a[j])) 116 dc.AddEdge(i,j+n,inf); 117 } 118 printf("%d",ans-dc.MaxFlow(S,T)/2); 119 return 0; 120 }