题目链接:#6279. 数列分块入门 3
题目大意
给出一个长为 (n) 的数列,以及 (n) 个操作,操作涉及区间加法,询问区间内小于某个值 (x) 的前驱(比其小的最大元素)。
solution
这就是标准的分块套平衡树的裸题
但是平衡树太难写了,这里我们就对每个块排个序就好了
我们还是沿用第二题的写法
然后,查询就变成了找最大值,同时记录一下个数,如果这个个数为0, 那就是-1, 否则就是我们找的值
注意:在 (lower_bound) 时, 最后的最大值别忘了加上我们记录的值哟
Code:
/**
* Author: Alieme
* Data: 2020.9.8
* Problem: LibreOJ #6279
* Time: O()
*/
#include <cstdio>
#include <iostream>
#include <string>
#include <cstring>
#include <cmath>
#include <algorithm>
#define int long long
#define rr register
#define inf 1e12
#define MAXN 100010
using namespace std;
inline int read() {
int s = 0, f = 0;
char ch = getchar();
while (!isdigit(ch)) f |= ch == '-', ch = getchar();
while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar();
return f ? -s : s;
}
void print(int x) {
if (x < 0) putchar('-'), x = -x;
if (x > 9) print(x / 10);
putchar(x % 10 + 48);
}
int n, len;
int a[MAXN], b[MAXN], id[MAXN], v[MAXN];
inline void update(int x) {
int l = (x - 1) * len + 1, r = min(x * len, n);
for (rr int i = l; i <= r; i++) b[i] = a[i];
sort(b + l, b + r + 1);
}
inline void add(int l, int r, int x) {
int start = id[l], end = id[r];
if (start == end) {
for (rr int i = l; i <= r; i++) a[i] += x;
update(id[l]);
return ;
}
for (rr int i = l; id[i] == start; i++) a[i] += x; update(start);
for (rr int i = start + 1; i < end; i++) v[i] += x;
for (rr int i = r; id[i] == end; i--) a[i] += x; update(end);
}
inline int fin(int pid, int x, int &ans) {
int l = (pid - 1) * len + 1, r = min(pid * len, n);
int t = lower_bound(b + l, b + r + 1, x - v[pid]) - (b + l);
ans += t;
// cout << t;
// cout << t << " " << b[t + l - 1] << " " << x - v[pid] << "
";
if (t == 0) return -inf;
return b[t - 1 + l] + v[pid];
}
inline int query(int l, int r, int x) {
int maxx = -inf, ans = 0, start = id[l], end = id[r];
if (start == end) {
for (rr int i = l; i <= r; i++) if (a[i] + v[start] < x) maxx = max(maxx, a[i] + v[start]), ans++;
if (ans == 0) maxx = -1;
return maxx;
}
for (rr int i = l; id[i] == start; i++) if (a[i] + v[start] < x) maxx = max(maxx, a[i] + v[start]), ans++;
for (rr int i = start + 1; i < end; i++) maxx = max(maxx, fin(i, x, ans));
for (rr int i = r; id[i] == end; i--) if (a[i] + v[end] < x) maxx = max(maxx, a[i] + v[end]), ans++;
if (ans == 0) maxx = -1;
return maxx;
}
signed main() {
// freopen("a1.in", "r", stdin);
// freopen("a.out", "w", stdout);
n = read();
len = sqrt(n);
for (rr int i = 1; i <= n; i++) a[i] = read(), id[i] = (i - 1) / len + 1;
for (rr int i = len; i <= n; i += len) update(id[i]);
for (rr int i = 1; i <= n; i++) {
int opt = read(), l = read(), r = read(), c = read();
if (opt == 0) add(l, r, c);
if (opt == 1) cout << query(l, r, c) << "
";
}
}