zoukankan      html  css  js  c++  java
  • 手写数字识别-Tensorflow框架

    #MNIST数据集
    # coding: utf-8
    
    # In[2]:
    
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    
    # In[3]:
    
    #载入数据集
    mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
    
    #每个批次的大小
    batch_size = 50
    #计算一共有多少个批次
    n_batch = mnist.train.num_examples // batch_size
    
    #定义两个placeholder
    x = tf.placeholder(tf.float32,[None,784])
    y = tf.placeholder(tf.float32,[None,10])
    
    #创建一个简单的神经网络
    W = tf.Variable(tf.zeros([784,10]))
    b = tf.Variable(tf.zeros([10]))
    prediction = tf.nn.softmax(tf.matmul(x,W)+b)
    
    #二次代价函数
    loss = tf.reduce_mean(tf.square(y-prediction))
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
    
    #初始化变量
    init = tf.global_variables_initializer()
    
    #结果存放在一个布尔型列表中
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
    #求准确率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(21):
            for batch in range(n_batch):
                batch_xs,batch_ys =  mnist.train.next_batch(batch_size)
                sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
            
            acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
            print("Iter " + str(epoch) + ",Testing Accuracy " + str(acc))
    
    
    # In[ ]:
  • 相关阅读:
    JQuery
    JS
    PHP
    Java并发编程:CopyOnWrite容器的实现
    Java并发编程:并发容器ConcurrentHashMap
    Java并发编程:同步容器
    Java并发编程:ThreadLocal
    Java并发编程:sleep、wait、yield对比
    Java并发编程:volatile关键字解析
    Java并发编程:Lock
  • 原文地址:https://www.cnblogs.com/lifengwu/p/10432988.html
Copyright © 2011-2022 走看看