zoukankan      html  css  js  c++  java
  • 非线性回归tensorflow

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    #非线性回归
    #使用numpy生成200个随机点
    x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]#均匀分布
    noise = np.random.normal(0,0.02,x_data.shape)#随机值
    y_data = np.square(x_data)+noise
    #定义两个placeholder
    x = tf.placeholder(tf.float32,[None,1])
    y = tf.placeholder(tf.float32,[None,1])
    #定义神经网络中间层
    Weights_L1 = tf.Variable(tf.random_normal([1,10]))
    biases_L1 = tf.Variable(tf.zeros([1,10]))
    Wx_plus_b_L1 = tf.matmul(x,Weights_L1)+biases_L1
    L1 = tf.nn.tanh(Wx_plus_b_L1)
    #定义神经网络输出层
    Weights_L2 = tf.Variable(tf.random_normal([10,1]))
    biases_L2 = tf.Variable(tf.zeros([1,1]))
    Wx_plus_b_L2 = tf.matmul(L1,Weights_L2)+biases_L2
    prediction = tf.nn.tanh(Wx_plus_b_L2)
    #二次代价函数
    loss = tf.reduce_mean(tf.square(y-prediction))
    #使用梯度下降法
    train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
    with tf.Session() as sess:
        #变量初始化
        sess.run(tf.global_variables_initializer())
        for _ in range(2000):
            sess.run(train_step,feed_dict={x:x_data,y:y_data})
            #获得预测值
            prediction_value = sess.run(prediction,feed_dict={x:x_data})
            #画图
            plt.figure()
            plt.scatter(x_data,y_data)
            plt.plot(x_data,prediction_value,'r-',lw=5)
            plt.show()
  • 相关阅读:
    利用Cubieborad破解WiFi
    从零开始——Mysql备份还原数据库
    从零开始——Ubuntu系统安装redis和phpredis
    监控应用卡顿BlockCanary
    2.AS内存分析
    热修复原理
    MultiDex 原理
    APP启动时白屏优化及multidex优化
    线程池的简便记忆方法
    2.volatile和AtomicXX
  • 原文地址:https://www.cnblogs.com/lifengwu/p/9830460.html
Copyright © 2011-2022 走看看