zoukankan      html  css  js  c++  java
  • wide_and_deep_model_keras学习(有错误

    #coding: utf-8
    '''
    用keras写的google Wide&&Deep model
    '''
    
    import pandas as pd
    from keras.models import Sequential
    from keras.layers import Dense, merge
    from sklearn.preprocessing import MinMaxScaler
    
    #所有的数据列
    COLUMNS = [
        "age", "workclass", "fnlwgt", "education", "education_num", "marital_status", 
        "occupation", "relationship", "race", "gender", "capital_gain", "capital_loss", 
        "hours_per_week", "native_country", "income_bracket"
    ]
    
    #标签列
    LABEL_COLUMN = "label"
    
    #类别型特征变量
    CATEGORICAL_COLUMNS = [
        "workclass", "education", "marital_status", "occupation", "relationship", 
        "race", "gender", "native_country"
    ]
    
    #连续值特征变量
    CONTINUOUS_COLUMNS = [
        "age", "education_num", "capital_gain", "capital_loss", "hours_per_week"
    ]
    
    #加载文件
    def load(filename):
        with open(filename, 'r') as f:
            skiprows = 1 if 'test' in filename else 0
            df = pd.read_csv(
                f, names=COLUMNS, skipinitialspace=True, skiprows=skiprows, engine='python'
            )
            #缺省值处理
            df = df.dropna(how='any', axis=0)
        return df
    
    #预处理
    def preprocess(df):
        df[LABEL_COLUMN] = df['income_bracket'].apply(lambda x: ">50K" in x).astype(int)
        df.pop("income_bracket")
        y = df[LABEL_COLUMN].values
        df.pop(LABEL_COLUMN)
        
        df = pd.get_dummies(df, columns=[x for x in CATEGORICAL_COLUMNS])
    
        # TODO: 对特征进行选择,使得网络更高效
        
        # TODO: 特征工程,比如加入交叉与组合特征
        # from sklearn.preprocessing import PolynomialFeatures
        # X = PolynomialFeatures(degree=2, interaction_only=True, include_bias=False).fit_transform(X)
        
        df = pd.DataFrame(MinMaxScaler().fit_transform(df), columns=df.columns)
    
        X = df.values
        return X, y
    
    def main():
        df_train = load('adult.data')
        df_test = load('adult.test')
        df = pd.concat([df_train, df_test])#拼接
        train_len = len(df_train)
        
        X, y = preprocess(df)
        X_train = X[:train_len]
        y_train = y[:train_len]
        X_test = X[train_len:]
        y_test = y[train_len:]
        
        #Wide部分
        wide = Sequential()
        wide.add(Dense(1, input_dim=X_train.shape[1]))
        
        #Deep部分
        deep = Sequential()
        # TODO: 添加embedding层
        deep.add(Dense(input_dim=X_train.shape[1], output_dim=100, activation='relu'))
        #deep.add(Dense(100, activation='relu'))
        deep.add(Dense(input_dim=100, output_dim=32, activation='relu'))
        #deep.add(Dense(50, activation='relu'))
        deep.add(Dense(input_dim=32, output_dim=8))
        deep.add(Dense(1, activation='sigmoid'))
        
        #Wide和Deep拼接 :两边搭出来,一拼接
        model = Sequential()
        model.add(merge([wide, deep], mode='concat', concat_axis=1))
        model.add(Dense(1, activation='sigmoid'))
        
        #编译模型
        model.compile(
            optimizer='rmsprop',
            loss='binary_crossentropy',
            metrics=['accuracy']
        )
        
        #模型训练
        model.fit([X_train, X_train], y_train, nb_epoch=10, batch_size=32)
        
        #loss与准确率评估
        loss, accuracy = model.evaluate([X_test, X_test], y_test)
        print('
    ', 'test accuracy:', accuracy)
        
    if __name__ == '__main__':
        main()
    #错误为:
    model.add(merge([wide, deep], mode='concat', concat_axis=1))

    #TypeError: 'module' object is not callable
    
    
  • 相关阅读:
    阿里terway源码分析
    golang timeoutHandler解析及kubernetes中的变种
    第四章 控制和循环
    关于 自媒体的声明
    java用正则表达式获取url的域名
    javaweb三大核心基础技术
    NumPy之计算两个矩阵的成对平方欧氏距离
    C/C++之计算两个整型的平均值
    C/C++代码优化之整型除以2的指数并四舍五入
    SSE系列内置函数中的shuffle函数
  • 原文地址:https://www.cnblogs.com/lifengwu/p/9839428.html
Copyright © 2011-2022 走看看