zoukankan      html  css  js  c++  java
  • A1078. Hashing (25)

    The task of this problem is simple: insert a sequence of distinct positive integers into a hash table, and output the positions of the input numbers. The hash function is defined to be "H(key) = key % TSize" where TSize is the maximum size of the hash table. Quadratic probing (with positive increments only) is used to solve the collisions.

    Note that the table size is better to be prime. If the maximum size given by the user is not prime, you must re-define the table size to be the smallest prime number which is larger than the size given by the user.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains two positive numbers: MSize (<=104) and N (<=MSize) which are the user-defined table size and the number of input numbers, respectively. Then N distinct positive integers are given in the next line. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print the corresponding positions (index starts from 0) of the input numbers in one line. All the numbers in a line are separated by a space, and there must be no extra space at the end of the line. In case it is impossible to insert the number, print "-" instead.

    Sample Input:

    4 4
    10 6 4 15
    

    Sample Output:

    0 1 4 -
     1 #include <stdio.h>
     2 #include <stdlib.h>
     3 #include <iostream>
     4 #include <string.h>
     5 
     6 #include <math.h>
     7 #include <algorithm>
     8 
     9 
    10 #include <string>
    11 
    12 using namespace std;
    13 const int N=10010;
    14 bool p[N]={false};
    15 
    16 int prime[N]={0},num=0;
    17 void Find_Prime()
    18 {
    19     p[0]=true;
    20     p[1]=true;
    21     for(int i=2;i<N;i++) 
    22     {
    23         if(p[i]==false)
    24         {
    25             prime[num++]=i;
    26             //if(num>N)break;
    27             for(int j=i+i;j<N;j+=i)
    28             {
    29                 p[j]=true;
    30             }
    31         }
    32     }
    33 }
    34 
    35 
    36  
    37 int main(){
    38     Find_Prime();
    39      bool hash[N]={0};
    40      int n,tsize,a;
    41      scanf("%d%d",&tsize,&n);
    42      int i=0;
    43      while(prime[i]<tsize)
    44      {
    45          i++;
    46      }
    47      tsize=prime[i];
    48      for(i=0;i<n;i++)
    49      {
    50          scanf("%d",&a);
    51          int M=a%tsize;
    52          if(hash[M]==false)
    53          {
    54              hash[M]=true;
    55              if(i==0)printf("%d",M);
    56              else printf(" %d",M);
    57          }else
    58          {
    59              int step;
    60              for(step=1;step<tsize;step++)
    61              {
    62                  M=(a+step*step)%tsize;
    63                  if(hash[M]==false)
    64                  {
    65                   hash[M]=true;
    66                   if(i==0)printf("%d",M);
    67                   else printf(" %d",M);
    68                  break;    
    69                  }
    70              }
    71              if(step>=tsize)
    72              {
    73                  if(i>0)printf(" ");
    74                  printf("-");
    75              }
    76          }
    77      }
    78     return 0;
    79 }
  • 相关阅读:
    paip.环境设置 mybatis ibatis cfg 环境设置
    paip。java 高级特性 类默认方法,匿名方法+多方法连续调用, 常量类型
    paip. java的 函数式编程 大法
    paip.函数方法回调机制跟java php python c++的实现
    paip.配置ef_unified_filter() failed ext_filter_module mod_ext_filter.so apache 错误解决
    paip. 解决java程序不能自动退出
    Paip.声明式编程以及DSL 总结
    paip. dsl 编程语言优点以及 常见的dsl
    paip.函数式编程方法概述以及总结
    paip.jdbc 连接自动释放的测试
  • 原文地址:https://www.cnblogs.com/ligen/p/4312874.html
Copyright © 2011-2022 走看看