zoukankan      html  css  js  c++  java
  • A1078. Hashing (25)

    The task of this problem is simple: insert a sequence of distinct positive integers into a hash table, and output the positions of the input numbers. The hash function is defined to be "H(key) = key % TSize" where TSize is the maximum size of the hash table. Quadratic probing (with positive increments only) is used to solve the collisions.

    Note that the table size is better to be prime. If the maximum size given by the user is not prime, you must re-define the table size to be the smallest prime number which is larger than the size given by the user.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains two positive numbers: MSize (<=104) and N (<=MSize) which are the user-defined table size and the number of input numbers, respectively. Then N distinct positive integers are given in the next line. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, print the corresponding positions (index starts from 0) of the input numbers in one line. All the numbers in a line are separated by a space, and there must be no extra space at the end of the line. In case it is impossible to insert the number, print "-" instead.

    Sample Input:

    4 4
    10 6 4 15
    

    Sample Output:

    0 1 4 -
     1 #include <stdio.h>
     2 #include <stdlib.h>
     3 #include <iostream>
     4 #include <string.h>
     5 
     6 #include <math.h>
     7 #include <algorithm>
     8 
     9 
    10 #include <string>
    11 
    12 using namespace std;
    13 const int N=10010;
    14 bool p[N]={false};
    15 
    16 int prime[N]={0},num=0;
    17 void Find_Prime()
    18 {
    19     p[0]=true;
    20     p[1]=true;
    21     for(int i=2;i<N;i++) 
    22     {
    23         if(p[i]==false)
    24         {
    25             prime[num++]=i;
    26             //if(num>N)break;
    27             for(int j=i+i;j<N;j+=i)
    28             {
    29                 p[j]=true;
    30             }
    31         }
    32     }
    33 }
    34 
    35 
    36  
    37 int main(){
    38     Find_Prime();
    39      bool hash[N]={0};
    40      int n,tsize,a;
    41      scanf("%d%d",&tsize,&n);
    42      int i=0;
    43      while(prime[i]<tsize)
    44      {
    45          i++;
    46      }
    47      tsize=prime[i];
    48      for(i=0;i<n;i++)
    49      {
    50          scanf("%d",&a);
    51          int M=a%tsize;
    52          if(hash[M]==false)
    53          {
    54              hash[M]=true;
    55              if(i==0)printf("%d",M);
    56              else printf(" %d",M);
    57          }else
    58          {
    59              int step;
    60              for(step=1;step<tsize;step++)
    61              {
    62                  M=(a+step*step)%tsize;
    63                  if(hash[M]==false)
    64                  {
    65                   hash[M]=true;
    66                   if(i==0)printf("%d",M);
    67                   else printf(" %d",M);
    68                  break;    
    69                  }
    70              }
    71              if(step>=tsize)
    72              {
    73                  if(i>0)printf(" ");
    74                  printf("-");
    75              }
    76          }
    77      }
    78     return 0;
    79 }
  • 相关阅读:
    LeetCode 560. Subarray Sum Equals K (子数组之和等于K)
    25、LinkedList特有方法
    24、List三个子类的特点
    23、数据结构之数组和链表
    22、Vector简介
    21、List遍历时修改元素的问题
    20、List集合中特有的方法
    19、集合概述
    18、Random类简介
    17、enum简介
  • 原文地址:https://www.cnblogs.com/ligen/p/4312874.html
Copyright © 2011-2022 走看看