zoukankan      html  css  js  c++  java
  • A1043. Is It a Binary Search Tree (25)

    Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

    • The left subtree of a node contains only nodes with keys less than the node's key.
    • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
    • Both the left and right subtrees must also be binary search trees.

    If we swap the left and right subtrees of every node, then the resulting tree is called the Mirror Image of a BST.

    Now given a sequence of integer keys, you are supposed to tell if it is the preorder traversal sequence of a BST or the mirror image of a BST.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (<=1000). Then N integer keys are given in the next line. All the numbers in a line are separated by a space.

    Output Specification:

    For each test case, first print in a line "YES" if the sequence is the preorder traversal sequence of a BST or the mirror image of a BST, or "NO" if not. Then if the answer is "YES", print in the next line the postorder traversal sequence of that tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

    Sample Input 1:

    7
    8 6 5 7 10 8 11
    

    Sample Output 1:

    YES
    5 7 6 8 11 10 8
    

    Sample Input 2:

    7
    8 10 11 8 6 7 5
    

    Sample Output 2:

    YES
    11 8 10 7 5 6 8
    

    Sample Input 3:

    7
    8 6 8 5 10 9 11
    

    Sample Output 3:

    NO
    

    提交代码

      1 #include <stdio.h>
      2 #include <stdlib.h>
      3 #include <iostream>
      4 #include <string.h>
      5 #include <math.h>
      6 #include <algorithm>
      7 #include <string>
      8 #include <stack> 
      9 #include <queue>
     10 using namespace std;
     11 int n; 
     12 struct tree{
     13     int data;
     14     tree *left;
     15     tree *right;
     16 };
     17 
     18 void  insert(tree *&root,int data)
     19 {
     20     if(root==NULL)
     21     {
     22      root=new tree;
     23      root->data=data;
     24      root->left=NULL;
     25      root->right=NULL;
     26      return ;    
     27     }
     28     if(data<root->data)insert(root->left,data);
     29     else insert(root->right,data);
     30 }
     31 
     32 void preorder(tree * root,vector<int> &pre)
     33 {
     34     if(root==NULL)return;
     35     pre.push_back(root->data);
     36     preorder(root->left,pre);
     37     preorder(root->right,pre);
     38     
     39 }
     40 void preorderM(tree * root,vector<int> &preM)
     41 {
     42     if(root==NULL)return ;
     43     preM.push_back(root->data);
     44     preorderM(root->right,preM);
     45     preorderM(root->left,preM);
     46     
     47 }
     48 void postorder(tree * root,vector<int> &post)
     49 {
     50     if(root==NULL)return ;
     51     postorder(root->left,post);
     52     postorder(root->right,post);
     53     post.push_back(root->data);    
     54 }
     55 void postorderM(tree * root,vector<int> &postM)
     56 {
     57     if(root==NULL)return;
     58     postorderM(root->right,postM);
     59     postorderM(root->left,postM);    
     60     postM.push_back(root->data);    
     61 }
     62 
     63 vector<int> origin,pre,preM,post,postM;
     64 int main(){
     65      scanf("%d",&n);
     66      tree * root=NULL;
     67      for(int i=0;i<n;i++)
     68      {
     69          int temp;
     70          scanf("%d",&temp);
     71          origin.push_back(temp);
     72          insert(root,temp);
     73      } 
     74      
     75     //树已经插入好,开始先序遍历
     76      preorder(root,pre); 
     77     //镜像先序遍历
     78      preorderM(root,preM) ;
     79      
     80      
     81      postorder(root,post);
     82      postorderM(root,postM);
     83      if(origin==pre)
     84      {
     85          printf("YES
    ");
     86          for(int i=0;i<post.size();i++)
     87          {
     88              printf("%d",post[i]);
     89              if(i<post.size()-1)printf(" "); 
     90          }
     91      }else if(origin==preM)
     92      {
     93          printf("YES
    ");
     94          for(int i=0;i<postM.size();i++)
     95          {
     96              printf("%d",postM[i]);
     97              if(i<postM.size()-1)printf(" "); 
     98          }
     99      }else
    100      {
    101          printf("NO
    ");
    102      }
    103      
    104      
    105       
    106     return 0;
    107 }
  • 相关阅读:
    Django复习
    AI-CBV写法
    CHENGDU3-Restful API 接口规范、django-rest-framework框架
    人工智能玩具制作
    POJ 3176 Cow Bowling
    HDU 2044 一只小蜜蜂
    HDU 4662 MU Puzzle
    POJ 3262 Protecting the Flowers
    POJ 1862 Stripies
    POJ 1017 Packets
  • 原文地址:https://www.cnblogs.com/ligen/p/4319375.html
Copyright © 2011-2022 走看看