zoukankan      html  css  js  c++  java
  • A1004. Counting Leaves (30)

    A family hierarchy is usually presented by a pedigree tree. Your job is to count those family members who have no child.

    Input

    Each input file contains one test case. Each case starts with a line containing 0 < N < 100, the number of nodes in a tree, and M (< N), the number of non-leaf nodes. Then M lines follow, each in the format:

    ID K ID[1] ID[2] ... ID[K]
    

    where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 01.

    Output

    For each test case, you are supposed to count those family members who have no child for every seniority level starting from the root. The numbers must be printed in a line, separated by a space, and there must be no extra space at the end of each line.

    The sample case represents a tree with only 2 nodes, where 01 is the root and 02 is its only child. Hence on the root 01 level, there is 0 leaf node; and on the next level, there is 1 leaf node. Then we should output "0 1" in a line.

    Sample Input

    2 1
    01 1 02
    

    Sample Output

    0 1
     1 #include <stdio.h>
     2 #include <stdlib.h>
     3 #include <iostream>
     4 #include <string.h>
     5 #include <math.h>
     6 #include <algorithm>
     7 #include <string>
     8 #include <stack> 
     9 #include <queue>
    10 using namespace std;
    11 const int maxn=110; 
    12 int n,m;
    13 vector<int> tree[maxn];//
    14 int lost[maxn]={0},maxdep=0; 
    15 
    16 void DFS(int root,int depth)
    17  {
    18      if(depth>maxdep)maxdep=depth;
    19      if(tree[root].size()==0)//为叶子节点 
    20      {
    21          lost[depth]++; 
    22          return ;
    23      }
    24      for(int i=0;i<tree[root].size();i++)
    25      {
    26          DFS(tree[root][i],depth+1);
    27      }
    28     
    29  }
    30 int main(){
    31     scanf("%d %d",&n,&m);
    32     if(n==0){
    33     printf("0");
    34     return 0; 
    35     }
    36     for(int i=0;i<m;i++)
    37     {
    38         int id,count; 
    39         scanf("%d %d",&id,&count);
    40         for(int j=0;j<count;j++)
    41         {
    42             int tmp;
    43             scanf("%d",&tmp);
    44             tree[id-1].push_back(tmp-1); 
    45         }
    46          
    47     }
    48     //遍历树
    49      DFS(0,0); 
    50      printf("%d",lost[0]); 
    51      for(int i=1;i<=maxdep;i++)printf(" %d",lost[i]);
    52     return 0;
    53 }
  • 相关阅读:
    luogu P4779 【模板】单源最短路径(标准版)| dijkstra
    luogu P1160 队列安排 | 链式前向星
    luogu P1996 约瑟夫问题 | 链表
    luogu P3386 【模板】二分图匹配 | 匈牙利算法
    luogu P3366 【模板】最小生成树 | kruskal
    luogu P3378 【模板】堆
    luogu P3372 【模板】线段树 1
    luogu P1776 宝物筛选_NOI导刊2010提高(02) | 多重背包(二进制拆分)
    luogu P1616 疯狂的采药 | 完全背包
    luogu P1588 丢失的牛 | 宽搜
  • 原文地址:https://www.cnblogs.com/ligen/p/4321244.html
Copyright © 2011-2022 走看看