zoukankan      html  css  js  c++  java
  • A1013. Battle Over Cities (25)

     

    It is vitally important to have all the cities connected by highways in a war. If a city is occupied by the enemy, all the highways from/toward that city are closed. We must know immediately if we need to repair any other highways to keep the rest of the cities connected. Given the map of cities which have all the remaining highways marked, you are supposed to tell the number of highways need to be repaired, quickly.

    For example, if we have 3 cities and 2 highways connecting city1-city2 and city1-city3. Then if city1 is occupied by the enemy, we must have 1 highway repaired, that is the highway city2-city3.

    Input

    Each input file contains one test case. Each case starts with a line containing 3 numbers N (<1000), M and K, which are the total number of cities, the number of remaining highways, and the number of cities to be checked, respectively. Then M lines follow, each describes a highway by 2 integers, which are the numbers of the cities the highway connects. The cities are numbered from 1 to N. Finally there is a line containing K numbers, which represent the cities we concern.

    Output

    For each of the K cities, output in a line the number of highways need to be repaired if that city is lost.

    Sample Input
    3 2 3
    1 2
    1 3
    1 2 3
    
    Sample Output
    1
    0
    0
     1 #include <stdio.h>
     2 #include <stdlib.h>
     3 #include <iostream>
     4 #include <string.h>
     5 #include <math.h>
     6 #include <algorithm>
     7 #include <string>
     8 #include <stack> 
     9 #include <queue>
    10 #include <vector>
    11 using namespace std;
    12 const int maxn=1010;
    13 int father[maxn];
    14 int vis[maxn];
    15 int n,m,k; 
    16 vector<int> G[maxn];
    17 void init()
    18 {
    19     for(int i=1;i<maxn;i++)
    20     {
    21         father[i]=i;
    22         vis[i]=false;
    23     }
    24  } 
    25  int isFather(int x)
    26  {
    27      int tmp=x;
    28      while(x!=father[x])
    29      {
    30       x=father[x];    
    31     }
    32     //至此,x为所在集合的根 
    33     while(tmp!=father[tmp])
    34     {
    35         int z=tmp;
    36         tmp=father[tmp];
    37         father[z]=x;
    38     }
    39     return x;
    40  }
    41  
    42 void Union(int a,int b)
    43 {
    44       int fa=isFather(a);
    45     int fb=isFather(b);
    46     if(fa!=fb)
    47     {
    48         father[fa]=fb;
    49      } 
    50 } 
    51 
    52 
    53 
    54 int main(){
    55   scanf("%d%d%d",&n,&m,&k);
    56   for(int i=0;i<m;i++)
    57   {
    58       int c1,c2;
    59       scanf("%d %d",&c1,&c2);
    60       G[c1].push_back(c2);
    61       G[c2].push_back(c1);
    62   }
    63   for(int i=0;i<k;i++)
    64   {
    65       int tmp;
    66       scanf("%d",&tmp);
    67       //消除tmp点的相连边,之后计算分隔的块数,就可以求得所有的repair边
    68     //遍历 
    69     init();
    70     //合并集合
    71     for(int i=1;i<=n;i++)
    72     {
    73        for(int j=0;j<G[i].size();j++)
    74        {
    75            int v=G[i][j];
    76            if(v!=tmp&&i!=tmp)Union(i,v);
    77        }    
    78     }
    79     
    80     int  block=0;
    81     for(int i=1;i<=n;i++)
    82     {
    83         if(i==tmp)continue;
    84         if(i==father[i])block++;
    85      } 
    86      printf("%d
    ",block-1);
    87   }
    88   return 0;
    89 }
  • 相关阅读:
    元素显示模式
    cssW3c书写规范
    css字体标签相关
    标签显示模式
    css权重问题
    成员变量和局部变量的区别
    利用反射执行Spring方法,支持参数自动转换
    通用计价的简单代码实现
    关于数据迁移的记录
    【设计模式】----- 观察者模式
  • 原文地址:https://www.cnblogs.com/ligen/p/4330277.html
Copyright © 2011-2022 走看看