zoukankan      html  css  js  c++  java
  • A1007. Maximum Subsequence Sum (25)

    Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, Ni+1, ..., Nj } where 1 <= i <= j <= K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

    Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

    Input Specification:

    Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (<= 10000). The second line contains K numbers, separated by a space.

    Output Specification:

    For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

    Sample Input:

    10
    -10 1 2 3 4 -5 -23 3 7 -21
    

    Sample Output:

    10 1 4
     1 // hahaha.cpp : 定义控制台应用程序的入口点。
     2 //
     3 
     4 #include <stdafx.h>
     5 #include <stdio.h>
     6 #include <iostream>
     7 #include <vector>
     8 #include <map>
     9 #include <string>
    10 #include <cstdio>
    11 #include <set>
    12 #include <algorithm>
    13 #include <string.h>
    14 using namespace std;
    15 
    16 const int maxn=10010;
    17 int n;
    18 int a[maxn];
    19 
    20 
    21 int main()
    22 {
    23    scanf("%d",&n);
    24    bool flag=false;
    25    for(int i=0;i<n;i++)
    26        {
    27        scanf("%d",&a[i]);
    28        if(a[i]>=0)flag=true;
    29        }
    30    if(flag==false)
    31        {
    32        printf("0 %d %d",a[0],a[n-1]);
    33        return 0;
    34        }
    35    int dp[maxn];
    36    int s[maxn]={0};
    37    dp[0]=a[0];
    38    for(int i=1;i<n;i++)
    39        {
    40         if(dp[i-1]+a[i]>a[i])
    41             {
    42             dp[i]=dp[i-1]+a[i];
    43             s[i]=s[i-1];
    44             }else
    45             {
    46             dp[i]=a[i];
    47             s[i]=i;
    48             }
    49        }
    50    int k=0;
    51    for(int i=1;i<n;i++)
    52        {
    53        if(dp[i]>dp[k])
    54            {
    55            k=i;
    56            } 
    57        }
    58    printf("%d %d %d",dp[k],a[s[k]],a[k]);
    59     return 0;
    60 }
  • 相关阅读:
    最短路径算法floyd(转)
    Effective Java 笔记(超链接)
    最短路径算法Dijkstra (转)
    散列表(哈希表)工作原理 (转)
    Java标记接口
    java clone方法使用详解(转)
    Effective Java笔记 (转)
    KMP算法中next数组的理解与算法的实现(java语言)
    sqlserver行列调换
    Linq的一些用法
  • 原文地址:https://www.cnblogs.com/ligen/p/4342409.html
Copyright © 2011-2022 走看看