经过了漫长的研究,终于理解到了Colab如何完成一道简单的AI研习社上的题......
下面开始(傻瓜式博客教学)作业内容
0.写在前面
首先第一步利用谷歌浏览器搜索colab,然后点击左上角文件新建一个笔记本。
然后点击修改->笔记本设置->硬件加速器->GPU->保存
如下代码是检查是否存在GPU
import numpy as np
import matplotlib.pyplot as plt
import os
import torch
import torch.nn as nn
import torchvision
from torchvision import models,transforms,datasets
import time
import json
# 判断是否存在GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Using gpu: %s ' % torch.cuda.is_available())
运行结果:
1.下载数据
为什么用这个数据集简单理解就是colab如果直接跑JH给的数据集(下载链接)会吃不消,所以我们采用重新整理的2000张图的数据集
! wget http://fenggao-image.stor.sinaapp.com/dogscats.zip
! unzip dogscats.zip
此时文件结构如图:
当然我们最终是要测试官方的test所以我们需要先从正式比赛官网网页下载测试集
下载后解压,将test再压缩成test.zip。复制test.zip上传到colab文件中
右键点击上传。
等到右边进度条转完之后上传完毕
通过新建文件夹构建出这样的文件目录
利用Linux命令,将test文件解压到/dogscats/test/test目录之中
!unzip -d ./dogscats/test/test test.zip
解压完成后的文件结构
2.数据处理
datasets 是 torchvision 中的一个包,可以用做加载图像数据。它可以以多线程(multi-thread)的形式从硬盘中读取数据,使用 mini-batch 的形式,在网络训练中向 GPU 输送。在使用CNN处理图像时,需要进行预处理。图片将被整理成 的大小,同时还将进行归一化处理。
torchvision 支持对输入数据进行一些复杂的预处理/变换 (normalization, cropping, flipping, jittering 等)。具体可以参照 torchvision.tranforms 的官方文档说明。
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
vgg_format = transforms.Compose([
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
data_dir = './dogscats'
dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format)
for x in ['train', 'valid', 'test']}
dset_sizes = {x: len(dsets[x]) for x in ['train', 'valid', 'test']}
dset_classes = dsets['train'].classes
# 通过下面代码可以查看 dsets 的一些属性
print(dsets['train'].classes)
print(dsets['train'].class_to_idx)
print(dsets['train'].imgs[:5])
print('dset_sizes: ', dset_sizes)
loader_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6)
loader_valid = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=False, num_workers=6)
loader_test = torch.utils.data.DataLoader(dsets['test'], batch_size=5, shuffle=False, num_workers=6)
'''
valid 数据一共有2000张图,每个batch是5张,因此,下面进行遍历一共会输出到 400
同时,把第一个 batch 保存到 inputs_try, labels_try,分别查看
'''
count = 1
for data in loader_valid:
print(count, end='
')
if count == 1:
inputs_try,labels_try = data
count +=1
print(labels_try)
print(inputs_try.shape)
# 显示图片的小程序
def imshow(inp, title=None):
# Imshow for Tensor.
inp = inp.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = np.clip(std * inp + mean, 0,1)
plt.imshow(inp)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
# 显示 labels_try 的5张图片,即valid里第一个batch的5张图片
out = torchvision.utils.make_grid(inputs_try)
imshow(out, title=[dset_classes[x] for x in labels_try])
3.创建 VGG Model
torchvision中集成了很多在 ImageNet (120万张训练数据) 上预训练好的通用的CNN模型,可以直接下载使用。
在本课程中,我们直接使用预训练好的 VGG 模型。同时,为了展示 VGG 模型对本数据的预测结果,还下载了 ImageNet 1000 个类的 JSON 文件。
在这部分代码中,对输入的5个图片利用VGG模型进行预测,同时,使用softmax对结果进行处理,随后展示了识别结果。可以看到,识别结果是比较非常准确的。
!wget https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json
model_vgg = models.vgg16(pretrained=True)
with open('./imagenet_class_index.json') as f:
class_dict = json.load(f)
dic_imagenet = [class_dict[str(i)][1] for i in range(len(class_dict))]
inputs_try , labels_try = inputs_try.to(device), labels_try.to(device)
model_vgg = model_vgg.to(device)
outputs_try = model_vgg(inputs_try)
print(outputs_try)
print(outputs_try.shape)
'''
可以看到结果为5行,1000列的数据,每一列代表对每一种目标识别的结果。
但是我也可以观察到,结果非常奇葩,有负数,有正数,
为了将VGG网络输出的结果转化为对每一类的预测概率,我们把结果输入到 Softmax 函数
'''
m_softm = nn.Softmax(dim=1)
probs = m_softm(outputs_try)
vals_try,pred_try = torch.max(probs,dim=1)
print( 'prob sum: ', torch.sum(probs,1))
print( 'vals_try: ', vals_try)
print( 'pred_try: ', pred_try)
print([dic_imagenet[i] for i in pred_try.data])
imshow(torchvision.utils.make_grid(inputs_try.data.cpu()),
title=[dset_classes[x] for x in labels_try.data.cpu()])
4. 修改最后一层,冻结前面层的参数
VGG 模型如下图所示,注意该网络由三种元素组成:
- 卷积层(CONV)是发现图像中局部的 pattern
- 全连接层(FC)是在全局上建立特征的关联
- 池化(Pool)是给图像降维以提高特征的 invariance
我们的目标是使用预训练好的模型,因此,需要把最后的 nn.Linear 层由1000类,替换为2类。为了在训练中冻结前面层的参数,需要设置 required_grad=False。这样,反向传播训练梯度时,前面层的权重就不会自动更新了。训练中,只会更新最后一层的参数。
print(model_vgg)
model_vgg_new = model_vgg;
for param in model_vgg_new.parameters():
param.requires_grad = False
model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)
model_vgg_new = model_vgg_new.to(device)
print(model_vgg_new.classifier)
5. 训练并测试全连接层
包括三个步骤:第1步,创建损失函数和优化器;第2步,训练模型;第3步,测试模型。
'''
第一步:创建损失函数和优化器
损失函数 NLLLoss() 的 输入 是一个对数概率向量和一个目标标签.
它不会为我们计算对数概率,适合最后一层是log_softmax()的网络.
'''
criterion = nn.NLLLoss()
# 学习率
lr = 0.001
# 随机梯度下降
optimizer_vgg = torch.optim.SGD(model_vgg_new.classifier[6].parameters(),lr = lr)
'''
第二步:训练模型
'''
def train_model(model,dataloader,size,epochs=1,optimizer=None):
model.train()
for epoch in range(epochs):
running_loss = 0.0
running_corrects = 0
count = 0
for inputs,classes in dataloader:
inputs = inputs.to(device)
classes = classes.to(device)
outputs = model(inputs)
loss = criterion(outputs,classes)
optimizer = optimizer
optimizer.zero_grad()
loss.backward()
optimizer.step()
_,preds = torch.max(outputs.data,1)
# statistics
running_loss += loss.data.item()
running_corrects += torch.sum(preds == classes.data)
count += len(inputs)
print('Training: No. ', count, ' process ... total: ', size)
epoch_loss = running_loss / size
epoch_acc = running_corrects.data.item() / size
print('Loss: {:.4f} Acc: {:.4f}'.format(
epoch_loss, epoch_acc))
# 模型训练
train_model(model_vgg_new,loader_train,size=dset_sizes['train'], epochs=1,
optimizer=optimizer_vgg)
对分类编号好的结果数据集预测
def test_model(model,dataloader,size):
model.eval()
predictions = np.zeros(size)
all_classes = np.zeros(size)
all_proba = np.zeros((size,2))
i = 0
running_loss = 0.0
running_corrects = 0
for inputs,classes in dataloader:
inputs = inputs.to(device)
classes = classes.to(device)
outputs = model(inputs)
loss = criterion(outputs,classes)
_,preds = torch.max(outputs.data,1)
# statistics
running_loss += loss.data.item()
running_corrects += torch.sum(preds == classes.data)
predictions[i:i+len(classes)] = preds.to('cpu').numpy()
all_classes[i:i+len(classes)] = classes.to('cpu').numpy()
all_proba[i:i+len(classes),:] = outputs.data.to('cpu').numpy()
i += len(classes)
print('Testing: No. ', i, ' process ... total: ', size)
epoch_loss = running_loss / size
epoch_acc = running_corrects.data.item() / size
print('Loss: {:.4f} Acc: {:.4f}'.format(
epoch_loss, epoch_acc))
return predictions, all_proba, all_classes
predictions, all_proba, all_classes = test_model(model_vgg_new,loader_valid,size=dset_sizes['valid'])
对比赛给的test数据集预测,此时不用关心打印出的Acc(准确率),因为比赛给的test没有标记
predictions, all_proba, all_classes = test_model(model_vgg_new,loader_test,size=dset_sizes['test'])
结果导出在文件csv文件中
import csv
with open('./dogscats/cats_vs_dogs.csv','w',newline="")as f:
writer = csv.writer(f)
for index,cls in enumerate(predictions):
path = datasets.ImageFolder(os.path.join(data_dir,'test'),vgg_format).imgs[index][0]
l = path.split("/")
img_name = l[-1]
order = int(img_name.split(".")[0])
writer.writerow([order,int(predictions[index])])
找到cats_vs_dogs文件,右键文件->下载下来
左侧一栏是id右侧一栏是预测结果,我们得到的文档不是按照id从小到大递增的。所以需要排序。
ctrl + A 全选->右键点击排序->自定义排序->按照下图设置点击确定。
排序后
6. 可视化模型预测结果(主观分析)
主观分析就是把预测的结果和相对应的测试图像输出出来看看,一般有四种方式:
- 随机查看一些预测正确的图片
- 随机查看一些预测错误的图片
- 预测正确,同时具有较大的probability的图片
- 预测错误,同时具有较大的probability的图片
- 最不确定的图片,比如说预测概率接近0.5的图片
# 单次可视化显示的图片个数 n_view = 8 correct = np.where(predictions==all_classes)[0] from numpy.random import random, permutation idx = permutation(correct)[:n_view] print('random correct idx: ', idx) loader_correct = torch.utils.data.DataLoader([dsets['valid'][x] for x in idx], batch_size = n_view,shuffle=True) for data in loader_correct: inputs_cor,labels_cor = data # Make a grid from batch out = torchvision.utils.make_grid(inputs_cor) imshow(out, title=[l.item() for l in labels_cor]) # 类似的思路,可以显示错误分类的图片,这里不再重复代码
7. 提交答案得到返回结果
啊这,预测得分居然只有95.6。后续再优化一下模型