zoukankan      html  css  js  c++  java
  • 台州 OJ 2676 Tree of Tree 树状 DP

    描述

     

    You're given a tree with weights of each node, you need to find the maximum subtree of specified size of this tree.

    Tree Definition 
    A tree is a connected graph which contains no cycles.

    输入

     

    There are several test cases in the input.

    The first line of each case are two integers N(1 <= N <= 100), K(1 <= K <= N), where N is the number of nodes of this tree, and K is the subtree's size, followed by a line with N nonnegative integers, where the k-th integer indicates the weight of k-th node. The following N - 1 lines describe the tree, each line are two integers which means there is an edge between these two nodes. All indices above are zero-base and it is guaranteed that the description of the tree is correct.

    输出

     

    One line with a single integer for each case, which is the total weights of the maximum subtree.

    给一棵树(都是无向边,所以根的位置可以是任意的),求指定大小子树的最大重量和。

    第一次自己做出树状DP题目,好开心~

    dp[u][j] 表示,以 u 为根的子树,大小为 j 时,最大的重量和

    则可以写出状态转移方程 dp[u][j] = max(dp[u][k] + dp[v][j-k])    v 为 u 的子树,为当前树大小为 k,子树大小为 j-k, 因为根结点是一定要地,所以 1<k<=j。

    还是要注意,遍历树的大小的那个循环次序,是从大到小,类似于 0-1 背包的一维数组优化一样,要搞清楚数组中每一个格子存的状态到底是什么。

    代码:

    #include <iostream>
    #include <cstring>
    #include <vector>
    using namespace std;
    
    const int MAX = 105; 
    
    struct Node{
        int num, weight;
        Node(){}
        Node(int nn, int nw):num(nn), weight(nw){}
    }; 
    
    vector<int> tree[MAX];
    int vis[MAX];
    int dp[MAX][MAX];    //在 i 结点,结点数量为 j 时的最大重量 
    int w[MAX];
    int n, k;
    int ans;
    
    int dfs(int u);
    
    int main(){
    //    freopen("input.txt", "r", stdin);
        
        while(cin >> n >> k){
            for(int i=0; i<n; i++){
                cin >> w[i];
                tree[i].clear();
            }
            int u, v;
            for(int i=1; i<n; i++){
                cin >> u >> v;
                tree[u].push_back(v);
                tree[v].push_back(u);
            }
            
            ans = 0;
            for(int i=0; i<n; i++){
                memset(vis, 0, sizeof(vis));
                memset(dp, -1, sizeof(dp));
                for(int j=0; j<n; j++){
                    dp[j][0] = 0;
                    dp[j][1] = w[j];
                }
                dfs(i);
            }
            
            cout << ans << endl;
        }
        
        return 0;
    }
    
    int dfs(int u){
    //    cout << u << endl;
        vis[u] = 1;
        int maxNum = 1;
        for(int i=0; i<tree[u].size(); i++){
            int v = tree[u][i];
            if(vis[v] == 1)
                continue;
            maxNum += dfs(v);
            for(int j=min(maxNum, k); j>=1; j--){        //一共 j 个 ,注意循环次序,从大到小,前面的状态要搞懂 
                for(int x=0; x<j; x++){        //子树放 x 个 (u结点要放,因此 x 最大为 j-1) 
                    if(dp[u][j-x] != -1 && dp[v][x] != -1)
                        dp[u][j] = max(dp[u][j], dp[u][j-x] + dp[v][x]);
                }
            }
        }
        
        ans = max(ans, dp[u][k]);
        return maxNum;
    //    cout << u << " " << k << " " << dp[u][k] << endl;
    }
  • 相关阅读:
    MySQL
    MySQL
    MySQL
    javaScript之深度理解原型链
    javaScript之this的五种情况
    ES6之箭头函数中的this
    javaScript之跨浏览器的事件对象
    javaScript之事件处理程序
    javaScript之promise
    VUE之使用百度地图API
  • 原文地址:https://www.cnblogs.com/lighter-blog/p/7344690.html
Copyright © 2011-2022 走看看