p-value:拒绝原假设H0时犯错误的概率,即其值越小,越说明拒绝原假设H0 接受备择假设H1是正确的。
直观来说,就是犯错概率越低越好。
也可以解释为,假定“不靠谱”原假设为真时,得到与样本相同或者比样本更极端结果的概率。
例如,原假设“人们拇指平均长度是10cm”,根据样本数据得到p-value是0.03,这意味着如果人们拇指平均长度是10cm,得到样本或更极端结果的概率是0.03,小于0.05,这时我们就可以认为原假设不可能成立,即拒绝原假设。
这里需要注意的是,P值不是给定样本结果时原假设为真的概率,而是给定原假设为真时样本结果出现的概率。
p-value与alpha值:
p值精确地算出一个取样的稀罕程度,alpha值是事先给出的对样本稀有程度的判定界限。
Kaggle房价预测进阶版/bagging/boosting/AdaBoost/XGBoost
===稀疏数据
The Wide and Deep Learning Model(译文+Tensorlfow源码解析)
ppt=======
没有高质量的数据,就没有高质量的数据挖掘结果,当我们做监督学习算法,难免会碰到混乱的数据集,缺失的值,当缺失比例很小时,可直接对缺失记录进行舍弃或进行手工处理,missingno提供了一个小型的灵活的、易于使用的数据可视化和实用工具集,用图像的方式让你能够快速评估数据缺失的情况,而不是在数据表里面步履维艰。你可以根据数据的完整度对数据进行排序或过滤,或者根据热度图或树状图来考虑对数据进行修正。
missingno 是基于matplotlib建造的一个模块,所以它出图速度很快,并且能够灵活的处理pandas数据。
花了几天时间粗略地看完了xgboost原论文和作者的slide讲解,仅仅是入门入门入门笔记。给我的感觉就是xgboost算法比较复杂,针对传统GBDT算法做了很多细节改进,包括损失函数、正则化、切分点查找算法优化、稀疏感知算法、并行化算法设计等等。本文主要介绍xgboost基本原理以及与传统gbdt算法对比总结,后续会基于python版本做了一些实战调参试验。想详细学习xgboost算法原理建议通读作者原始论文与slide讲解。
skew定义
偏度(skewness),是统计数据分布偏斜方向和程度的度量,是统计数据分布非对称程度的数字特征。偏度(Skewness)亦称偏态、偏态系数。 表征概率分布密度曲线相对于平均值不对称程度的特征数。直观看来就是密度函数曲线尾部的相对长度。 定义上偏度是样本的三阶标准化矩: