zoukankan      html  css  js  c++  java
  • Linear Regression Health Costs Calculator

    Linear Regression Health Costs Calculator

    https://www.freecodecamp.org/learn/machine-learning-with-python/machine-learning-with-python-projects/linear-regression-health-costs-calculator

    In this challenge, you will predict healthcare costs using a regression algorithm.

    You are given a dataset that contains information about different people including their healthcare costs. Use the data to predict healthcare costs based on new data.

    You can access the full project instructions and starter code on Google Colaboratory.

    训练划分

    https://www.tensorflow.org/tutorials/keras/regression#split_the_data_into_train_and_test

    使用pandas的sample接口

    train_dataset = dataset.sample(frac=0.8, random_state=0)
    test_dataset = dataset.drop(train_dataset.index)

    当然使用sklearn train_test_split 也可以。

    https://towardsdatascience.com/keras-101-a-simple-and-interpretable-neural-network-model-for-house-pricing-regression-31b1a77f05ae

    from sklearn.model_selection import train_test_splitX = df.loc[:, df.columns != 'MEDV']
    y = df.loc[:, df.columns == 'MEDV']X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=123)

    正则化与模型构建

    https://www.tensorflow.org/tutorials/keras/regression#split_the_data_into_train_and_test

    horsepower = np.array(train_features['Horsepower'])

    horsepower_normalizer = preprocessing.Normalization(input_shape=[1,])
    horsepower_normalizer.adapt(horsepower)

    Build the sequential model:

    horsepower_model = tf.keras.Sequential([
        horsepower_normalizer,
        layers.Dense(units=1)
    ])

    horsepower_model.summary()

    模型配置与训练

    https://www.tensorflow.org/tutorials/keras/regression#split_the_data_into_train_and_test

    Once the model is built, configure the training procedure using the Model.compile() method. The most important arguments to compile are the loss and the optimizer since these define what will be optimized (mean_absolute_error) and how (using the optimizers.Adam).

    horsepower_model.compile(
        optimizer=tf.optimizers.Adam(learning_rate=0.1),
        loss='mean_absolute_error')

    Once the training is configured, use Model.fit() to execute the training:

    %%time
    history = horsepower_model.fit(
        train_features['Horsepower'], train_labels,
        epochs=100,
        # suppress logging
        verbose=0,
        # Calculate validation results on 20% of the training data
        validation_split = 0.2)

    When to use a Sequential model

    模型定义有两种形式,

    一种是 sequential

    另一种是 函数式

    sequential 使用简单形式, 输入数据都准备好,作为tensor出现, 如果特征中有 categories类型数据,需要自行转换为数据类型。、

    或者使用 函数式, 在输入层后,添加categories转换。

    https://colab.research.google.com/github/keras-team/keras-io/blob/master/guides/ipynb/sequential_model.ipynb#scrollTo=GCrA42dfKE9m

    ## When to use a Sequential model

    A `Sequential` model is appropriate for **a plain stack of layers**
    where each layer has **exactly one input tensor and one output tensor**.

    Schematically, the following `Sequential` model:

    # Define Sequential model with 3 layers
    model = keras.Sequential(
        [
            layers.Dense(2, activation="relu", name="layer1"),
            layers.Dense(3, activation="relu", name="layer2"),
            layers.Dense(4, name="layer3"),
        ]
    )
    # Call model on a test input
    x = tf.ones((3, 3))
    y = model(x)

    is equivalent to this function:

    # Create 3 layers
    layer1 = layers.Dense(2, activation="relu", name="layer1")
    layer2 = layers.Dense(3, activation="relu", name="layer2")
    layer3 = layers.Dense(4, name="layer3")

    # Call layers on a test input
    x = tf.ones((3, 3))
    y = layer3(layer2(layer1(x)))

    A Sequential model is **not appropriate** when:

    - Your model has multiple inputs or multiple outputs
    - Any of your layers has multiple inputs or multiple outputs
    - You need to do layer sharing
    - You want non-linear topology (e.g. a residual connection, a multi-branch
    model)

    参考:

    https://keras.io/guides/preprocessing_layers/

    https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/structured_data/preprocessing_layers.ipynb?hl=ar-bh#scrollTo=6Yrj-_pr6jyL

    出处:http://www.cnblogs.com/lightsong/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。
  • 相关阅读:
    Python中利用函数装饰器实现备忘功能
    selenium之 定位以及切换frame(iframe)
    selenium之操作ChromeDriver
    设置跑的次数
    l类型转换错误ClassCastException
    代码提交失败
    【cl】Json学习
    mysql下载安装
    mysql登录基本语句
    linux 递归删除目录文件
  • 原文地址:https://www.cnblogs.com/lightsong/p/14749331.html
Copyright © 2011-2022 走看看