zoukankan      html  css  js  c++  java
  • 计算PI -- 采用随机模拟方法

    Buffon's Needle

    https://mste.illinois.edu/activity/buffon/

    介绍 + 模拟

    Buffon's Needle is one of the oldest problems in the field of geometrical probability. It was first stated in 1777. It involves dropping a needle on a lined sheet of paper and determining the probability of the needle crossing one of the lines on the page. The remarkable result is that the probability is directly related to the value of pi.

    This page will present an analytical solution to the problem along with a JavaScript applet for simulating the needle drop in the simplest case scenario in which the length of the needle is the same as the distance between the lines.

    模拟

    https://mfliedner.github.io/

    原理解析

    https://mp.weixin.qq.com/s?__biz=MzI1MjYyMTgwMg==&mid=2247483735&idx=1&sn=76c34e1960bacdb6462c5e7c23cba4ad&chksm=e9e1a7d2de962ec4c5aea0a710e6a08db625725fd13c328eb46caa0a011e7a06ccc53dc016c3&token=1777454829&lang=zh_CN#rd

    直观的面积覆盖方法

    https://www.mathsisfun.com/geometry/circle-area.html#:~:text=The%20area%20of%20a%20circle%20is%3A%20%CF%80%20%28Pi%29,3.14159...%20%3D%2028.27%20m2%20%28to%202%20decimal%20places%29

    Comparing a Circle to a Square

    It is interesting to compare the area of a circle to a square:

    circle area is about 80% of square

    A circle has about 80% of the area of a similar-width square.
    The actual value is (π/4) = 0.785398... = 78.5398...%

    Why? Because the Square's Area is w2
    and the Circle's Area is (π/4) × w2

    推导

     

    Code

    https://github.com/fanqingsong/code_snippet/blob/master/CPP/calc_pi_rand.cpp

    #include <iostream>
    #include <iomanip>
    #include <ctime>
    #include <cmath>
    
    using namespace std;
    
    int main() {
        unsigned long long total = 0;
        unsigned long long hits = 0;
        double distance = 0;
        double pi = 0;
        double xpos = 0;
        double ypos = 0;
    
        srand((unsigned int)time(NULL));
    
        cout << "please input dot number:" << endl;
        cin >> total;
    
        for (unsigned long long i = 0; i < total; i++) {
            xpos = rand() / double(RAND_MAX);
            ypos = rand() / double(RAND_MAX);
    
            distance = sqrt(pow(xpos, 2) + pow(ypos, 2));
            if (distance <= 1) {
                hits++;
            }
        }
    
        cout << "hits=" << hits << endl;
        cout << "total=" << total << endl;
    
        pi = (double(hits) / total) * 4;
    
        cout << "after caculation, pi=" << pi << endl;
        return 0;
    }

    Demo

    出处:http://www.cnblogs.com/lightsong/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接。
  • 相关阅读:
    31.迭代器丶生成器
    30.面向对象中常用内建函数与重载函数丶自定义手动报错
    安装补全命令的包
    安装yum
    centos7时间同步
    yum解决 "Couldn't resolve host 'apt.sw.be'" 错误
    centos6多实例安装mysql
    openstack--部暑
    kvm安装
    如何将本地大文件通过终端上传到linux服务器
  • 原文地址:https://www.cnblogs.com/lightsong/p/15130882.html
Copyright © 2011-2022 走看看