zoukankan      html  css  js  c++  java
  • POJ 1003:Hangover

    Hangover
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 109231   Accepted: 53249

    Description

    How far can you make a stack of cards overhang a table? If you have one card, you can create a maximum overhang of half a card length. (We're assuming that the cards must be perpendicular to the table.) With two cards you can make the top card overhang the bottom one by half a card length, and the bottom one overhang the table by a third of a card length, for a total maximum overhang of 1/2 + 1/3 = 5/6 card lengths. In general you can make n cards overhang by 1/2 + 1/3 + 1/4 + ... + 1/(n + 1) card lengths, where the top card overhangs the second by 1/2, the second overhangs tha third by 1/3, the third overhangs the fourth by 1/4, etc., and the bottom card overhangs the table by 1/(n + 1). This is illustrated in the figure below.



    Input

    The input consists of one or more test cases, followed by a line containing the number 0.00 that signals the end of the input. Each test case is a single line containing a positive floating-point number c whose value is at least 0.01 and at most 5.20; c will contain exactly three digits.

    Output

    For each test case, output the minimum number of cards necessary to achieve an overhang of at least c card lengths. Use the exact output format shown in the examples.

    Sample Input

    1.00
    3.71
    0.04
    5.19
    0.00
    

    Sample Output

    3 card(s)
    61 card(s)
    1 card(s)
    273 card(s)


    水题,求 1/2 + 1/3 + 1/4 + ... + 1/(n + 1)>=c的最小n。输出时候注意要将退出的n减2才符合条件。

    代码:

    #include <iostream>
    using namespace std;
    
    int main()
    {
    	double x,sum=0;
    	int n;
    	cin>>x;
    	for(;;)
    	{
    		if(!x)
    		 break;
    		for(n=2;;n++)
    		{
    			if(sum>x)
    				break;
    			sum=sum+(double)1/n;
    		}
    		cout<<n-2<<" card(s)"<<endl;
    		sum=0;
    		cin>>x;
    	}
    	return 0;
    }



    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    OI数学知识清单
    线段树入门教程
    扩展欧几里得定理基础讲解 代码及证明
    名字竞技场 V3.0
    可持久化线段树(主席树)新手向教程
    矩阵乘法浅析
    [Luogu] P1233 木棍加工
    高斯消元 模板
    位运算技巧
    [ZJOJ] 5794 2018.08.10【2018提高组】模拟A组&省选 旅行
  • 原文地址:https://www.cnblogs.com/lightspeedsmallson/p/4785860.html
Copyright © 2011-2022 走看看