zoukankan      html  css  js  c++  java
  • POJ 3292:Semi-prime H-numbers 筛选数

    Semi-prime H-numbers
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 8216   Accepted: 3556

    Description

    This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

    An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

    As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

    For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

    Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.

    Input

    Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

    Output

    For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

    Sample Input

    21 
    85
    789
    0

    Sample Output

    21 0
    85 5
    789 62

    题意是有一个数的集合 {4n+1},叫做H-numbers,这个集合里面的运算是封闭的。如果H-numbers里面的数如果只能整除1和本身(排除1),那这个数就是H-primes。其余的是H-composites,这里面包括了H-semi-primes,H-semi-primes的意思是它本身是合数,但是它的两个因子都是H-primes。

    求在给出的1到h数之间,有多少个H-semi-primes这样的数。

    很好玩的筛选,总是在群里看到什么什么筛选,一直都不明白怎么玩这个筛选,但其实仔细想想,之前自己搞质数的时候已经用到了这些筛选的玩法了。这次只不过弄到台面上来了。

    首先把所有集合中的数(即4n+1)都标定为质数,然后有两个质数的乘积就标定为H-semi-primes,设为1。如果不是两个质数的乘积那就标定为H-composites,设为2。这样扫了一遍之后,为0的自然是质数,为1的就是H-semi-primes,为2的就是H-composites。最后统计一遍得到结果。

    代码:

    #include <iostream>
    #include <algorithm>
    #include <cmath>
    #include <vector>
    #include <string>
    #include <cstring>
    #pragma warning(disable:4996)
    using namespace std;
    
    int h[1000002];
    
    void init()
    {
    	int i, j, multi;
    
    	memset(h, 0, sizeof(h));
    	for (i = 5; i <= 1000001; i = i + 4)
    	{
    		for (j = 5; j <= 1000001; j = j + 4)
    		{
    			multi = i*j;
    			if (multi > 1000001)
    				break;
    			if (h[i] == 0 && h[j] == 0)
    				h[multi] = 1;
    			else
    				h[multi] = -1;
    		}
    	}
    	int count = 0;
    	for (i = 1; i <= 1000001; i++)
    	{
    		if (h[i] == 1)
    			count++;
    		h[i] = count;
    	}
    }
    
    int main()
    {
    	//freopen("i.txt","r",stdin);
    	//freopen("o.txt","w",stdout);
    	
    	int x;
    	init();
    	
    	while (cin >> x&&x)
    		cout << x << " " << h[x] << endl;
    
    	return 0;
    }
    

    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    VM 下增加磁盘空间
    在APACHE服务器上的访问方式上去除index.php
    1
    数组累加兼eval性能测试
    webstorm软件使用记录
    gulp配置安装使用
    jQuery方法笔记
    搭建Grunt集成环境开发SASS
    msysgit使用方法
    十诫在天主教和新教之间的差别
  • 原文地址:https://www.cnblogs.com/lightspeedsmallson/p/4928115.html
Copyright © 2011-2022 走看看