A zero-indexed array A of length N contains all integers from 0 to N-1. Find and return the longest length of set S, where S[i] = {A[i], A[A[i]], A[A[A[i]]], ... } subjected to the rule below.
Suppose the first element in S starts with the selection of element A[i] of index = i, the next element in S should be A[A[i]], and then A[A[A[i]]]… By that analogy, we stop adding right before a duplicate element occurs in S.
Example 1:
Input: A = [5,4,0,3,1,6,2] Output: 4 Explanation: A[0] = 5, A[1] = 4, A[2] = 0, A[3] = 3, A[4] = 1, A[5] = 6, A[6] = 2. One of the longest S[K]: S[0] = {A[0], A[5], A[6], A[2]} = {5, 6, 2, 0}
解法 :
这个题实际上是找到最大的环。要注意的一点是,一旦在前一个不同的环中被访问过,它就不会出现在当前环中,可以忽略。
The idea is to, start from every number, find circles in those index-pointer-chains, every time you find a set (a circle) mark every number as visited (-1) so that next time you won't step on it again.
Java:
public class Solution { public int arrayNesting(int[] a) { int maxsize = 0; for (int i = 0; i < a.length; i++) { int size = 0; for (int k = i; a[k] >= 0; size++) { int ak = a[k]; a[k] = -1; // mark a[k] as visited; k = ak; } maxsize = Integer.max(maxsize, size); } return maxsize; } }
Python:
class Solution(object): def arrayNesting(self, nums): """ :type nums: List[int] :rtype: int """ ans, step, n = 0, 0, len(nums) seen = [False] * n for i in range(n): while not seen[i]: seen[i] = True i, step = nums[i], step + 1 ans = max(ans, step) step = 0 return ans
C++:
class Solution { public: int arrayNesting(vector<int>& a) { size_t maxsize = 0; for (int i = 0; i < a.size(); i++) { size_t size = 0; for (int k = i; a[k] >= 0; size++) { int ak = a[k]; a[k] = -1; // mark a[k] as visited; k = ak; } maxsize = max(maxsize, size); } return maxsize; } };