Given an m x n
matrix of positive integers representing the height of each unit cell in a 2D elevation map, compute the volume of water it is able to trap after raining.
Note:
Both m and n are less than 110. The height of each unit cell is greater than 0 and is less than 20,000.
Example:
Given the following 3x6 height map: [ [1,4,3,1,3,2], [3,2,1,3,2,4], [2,3,3,2,3,1] ] Return 4.
The above image represents the elevation map [[1,4,3,1,3,2],[3,2,1,3,2,4],[2,3,3,2,3,1]]
before the rain.
After the rain, water is trapped between the blocks. The total volume of water trapped is 4.
42. Trapping Rain Water的拓展,由2D变3D了。解法跟之前的完全不同了,之前那道题由于是二维的,我们可以用双指针来做,而这道三维的,我们需要用BFS来做。
Java: Priority Queue
public class Solution { public class Cell { int row; int col; int height; public Cell(int row, int col, int height) { this.row = row; this.col = col; this.height = height; } } public int trapRainWater(int[][] heights) { if (heights == null || heights.length == 0 || heights[0].length == 0) return 0; PriorityQueue<Cell> queue = new PriorityQueue<>(1, new Comparator<Cell>(){ public int compare(Cell a, Cell b) { return a.height - b.height; } }); int m = heights.length; int n = heights[0].length; boolean[][] visited = new boolean[m][n]; // Initially, add all the Cells which are on borders to the queue. for (int i = 0; i < m; i++) { visited[i][0] = true; visited[i][n - 1] = true; queue.offer(new Cell(i, 0, heights[i][0])); queue.offer(new Cell(i, n - 1, heights[i][n - 1])); } for (int i = 0; i < n; i++) { visited[0][i] = true; visited[m - 1][i] = true; queue.offer(new Cell(0, i, heights[0][i])); queue.offer(new Cell(m - 1, i, heights[m - 1][i])); } // from the borders, pick the shortest cell visited and check its neighbors: // if the neighbor is shorter, collect the water it can trap and update its height as its height plus the water trapped // add all its neighbors to the queue. int[][] dirs = new int[][]{{-1, 0}, {1, 0}, {0, -1}, {0, 1}}; int res = 0; while (!queue.isEmpty()) { Cell cell = queue.poll(); for (int[] dir : dirs) { int row = cell.row + dir[0]; int col = cell.col + dir[1]; if (row >= 0 && row < m && col >= 0 && col < n && !visited[row][col]) { visited[row][col] = true; res += Math.max(0, cell.height - heights[row][col]); queue.offer(new Cell(row, col, Math.max(heights[row][col], cell.height))); } } } return res; } }
Python:
from heapq import heappush, heappop class Solution(object): def trapRainWater(self, heightMap): """ :type heightMap: List[List[int]] :rtype: int """ m = len(heightMap) if not m: return 0 n = len(heightMap[0]) if not n: return 0 is_visited = [[False for i in xrange(n)] for j in xrange(m)] heap = [] for i in xrange(m): heappush(heap, [heightMap[i][0], i, 0]) is_visited[i][0] = True heappush(heap, [heightMap[i][n-1], i, n-1]) is_visited[i][n-1] = True for j in xrange(n): heappush(heap, [heightMap[0][j], 0, j]) is_visited[0][j] = True heappush(heap, [heightMap[m-1][j], m-1, j]) is_visited[m-1][j] = True trap = 0 while heap: height, i, j = heappop(heap) for (dx, dy) in [(1,0), (-1,0), (0,1), (0,-1)]: x, y = i+dx, j+dy if 0 <= x < m and 0 <= y < n and not is_visited[x][y]: trap += max(0, height - heightMap[x][y]) heappush(heap, [max(height, heightMap[x][y]), x, y]) is_visited[x][y] = True return trap
C++:
class Solution { public: int trapRainWater(vector<vector<int>>& heightMap) { if (heightMap.empty()) return 0; int m = heightMap.size(), n = heightMap[0].size(), res = 0, mx = INT_MIN; priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; vector<vector<bool>> visited(m, vector<bool>(n, false)); vector<vector<int>> dir{{0,-1},{-1,0},{0,1},{1,0}}; for (int i = 0; i < m; ++i) { for (int j = 0; j < n; ++j) { if (i == 0 || i == m - 1 || j == 0 || j == n - 1) { q.push({heightMap[i][j], i * n + j}); visited[i][j] = true; } } } while (!q.empty()) { auto t = q.top(); q.pop(); int h = t.first, r = t.second / n, c = t.second % n; mx = max(mx, h); for (int i = 0; i < dir.size(); ++i) { int x = r + dir[i][0], y = c + dir[i][1]; if (x < 0 || x >= m || y < 0 || y >= n || visited[x][y]) continue; visited[x][y] = true; if (heightMap[x][y] < mx) res += mx - heightMap[x][y]; q.push({heightMap[x][y], x * n + y}); } } return res; } };
类似题目:
[LeetCode] 42. Trapping Rain Water 收集雨水
All LeetCode Questions List 题目汇总