Given a collection of candidate numbers (candidates
) and a target number (target
), find all unique combinations in candidates
where the candidate numbers sums to target
.
Each number in candidates
may only be used once in the combination.
Note:
- All numbers (including
target
) will be positive integers. - The solution set must not contain duplicate combinations.
Example 1:
Input: candidates =[10,1,2,7,6,1,5]
, target =8
, A solution set is: [ [1, 7], [1, 2, 5], [2, 6], [1, 1, 6] ]
Example 2:
Input: candidates = [2,5,2,1,2], target = 5, A solution set is: [ [1,2,2], [5] ]
39. Combination Sum 的变形,39题数组中的数字可以重复使用,而这道题数组中的数字不能重复使用。这里要考虑跳过重复的数字,其它的与39题一样。
解法:和39一样,递归 + backtracking
Java:
public List<List<Integer>> combinationSum2(int[] cand, int target) { Arrays.sort(cand); List<List<Integer>> res = new ArrayList<List<Integer>>(); List<Integer> path = new ArrayList<Integer>(); dfs_com(cand, 0, target, path, res); return res; } void dfs_com(int[] cand, int cur, int target, List<Integer> path, List<List<Integer>> res) { if (target == 0) { res.add(new ArrayList(path)); return ; } if (target < 0) return; for (int i = cur; i < cand.length; i++){ if (i > cur && cand[i] == cand[i-1]) continue; path.add(path.size(), cand[i]); dfs_com(cand, i+1, target - cand[i], path, res); path.remove(path.size()-1); } }
Java:
public List<List<Integer>> combinationSum2(int[] candidates, int target) { List<List<Integer>> result = new ArrayList<List<Integer>>(); List<Integer> curr = new ArrayList<Integer>(); Arrays.sort(candidates); helper(result, curr, 0, target, candidates); return result; } public void helper(List<List<Integer>> result, List<Integer> curr, int start, int target, int[] candidates){ if(target==0){ result.add(new ArrayList<Integer>(curr)); return; } if(target<0){ return; } int prev=-1; for(int i=start; i<candidates.length; i++){ if(prev!=candidates[i]){ // each time start from different element curr.add(candidates[i]); helper(result, curr, i+1, target-candidates[i], candidates); // and use next element only curr.remove(curr.size()-1); prev=candidates[i]; } } }
Python:
class Solution: # @param candidates, a list of integers # @param target, integer # @return a list of lists of integers def combinationSum2(self, candidates, target): result = [] self.combinationSumRecu(sorted(candidates), result, 0, [], target) return result def combinationSumRecu(self, candidates, result, start, intermediate, target): if target == 0: result.append(list(intermediate)) prev = 0 while start < len(candidates) and candidates[start] <= target: if prev != candidates[start]: intermediate.append(candidates[start]) self.combinationSumRecu(candidates, result, start + 1, intermediate, target - candidates[start]) intermediate.pop() prev = candidates[start] start += 1
C++:
class Solution { public: vector<vector<int> > combinationSum2(vector<int> &num, int target) { vector<vector<int> > res; vector<int> out; sort(num.begin(), num.end()); combinationSum2DFS(num, target, 0, out, res); return res; } void combinationSum2DFS(vector<int> &num, int target, int start, vector<int> &out, vector<vector<int> > &res) { if (target < 0) return; else if (target == 0) res.push_back(out); else { for (int i = start; i < num.size(); ++i) { if (i > start && num[i] == num[i - 1]) continue; out.push_back(num[i]); combinationSum2DFS(num, target - num[i], i + 1, out, res); out.pop_back(); } } } };
类似题目: