zoukankan      html  css  js  c++  java
  • [LeetCode] 310. Minimum Height Trees 最小高度树

    For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

    Format
    The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges(each edge is a pair of labels).

    You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

    Example 1 :

    Input: n = 4, edges = [[1, 0], [1, 2], [1, 3]]
    
            0
            |
            1
           / 
          2   3 
    
    Output: [1]
    

    Example 2 :

    Input: n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
    
         0  1  2
           | /
            3
            |
            4
            |
            5 
    
    Output: [3, 4]

    Note:

    • According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
    • The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

    Java:

    public List<Integer> findMinHeightTrees(int n, int[][] edges) {
        List<Integer> result = new ArrayList<Integer>();
        if(n==0){
            return result;
        }
        if(n==1){
            result.add(0);
            return result;
        }
     
        ArrayList<HashSet<Integer>> graph = new ArrayList<HashSet<Integer>>();
        for(int i=0; i<n; i++){
            graph.add(new HashSet<Integer>());
        }
     
        for(int[] edge: edges){
            graph.get(edge[0]).add(edge[1]);
            graph.get(edge[1]).add(edge[0]);
        }
     
        LinkedList<Integer> leaves = new LinkedList<Integer>();
        for(int i=0; i<n; i++){
            if(graph.get(i).size()==1){
                leaves.offer(i);
            }
        }
     
        if(leaves.size()==0){
            return result;
        }
     
        while(n>2){
            n = n-leaves.size();
     
            LinkedList<Integer> newLeaves = new LinkedList<Integer>();
     
            for(int l: leaves){
                int neighbor = graph.get(l).iterator().next();
                graph.get(neighbor).remove(l);
                if(graph.get(neighbor).size()==1){
                    newLeaves.add(neighbor);
                }
            }
     
            leaves = newLeaves;
        }
     
        return leaves;
    }  

    Python:

    class Solution(object):
        def findMinHeightTrees(self, n, edges):
            """
            :type n: int
            :type edges: List[List[int]]
            :rtype: List[int]
            """
            if n == 1:
                return [0]
    
            neighbors = collections.defaultdict(set)
            for u, v in edges:
                neighbors[u].add(v)
                neighbors[v].add(u)
    
            pre_level, unvisited = [], set()
            for i in xrange(n):
                if len(neighbors[i]) == 1:  # A leaf.
                    pre_level.append(i)
                unvisited.add(i)
    
            # A graph can have 2 MHTs at most.
            # BFS from the leaves until the number
            # of the unvisited nodes is less than 3.
            while len(unvisited) > 2:
                cur_level = []
                for u in pre_level:
                    unvisited.remove(u)
                    for v in neighbors[u]:
                        if v in unvisited:
                            neighbors[v].remove(u)
                            if len(neighbors[v]) == 1:
                                cur_level.append(v)
                pre_level = cur_level
    
            return list(unvisited)

    C++:

    // Time:  O(n)
    // Space: O(n)
    
    class Solution {
    public:
        vector<int> findMinHeightTrees(int n, vector<pair<int, int>>& edges) {
            if (n == 1) {
                return {0};
            }
    
            unordered_map<int, unordered_set<int>> neighbors;
            for (const auto& e : edges) {
                int u, v;
                tie(u, v) = e;
                neighbors[u].emplace(v);
                neighbors[v].emplace(u);
            }
    
            vector<int> pre_level, cur_level;
            unordered_set<int> unvisited;
            for (int i = 0; i < n; ++i) {
                if (neighbors[i].size() == 1) {  // A leaf.
                    pre_level.emplace_back(i);
                }
                unvisited.emplace(i);
            }
    
            // A graph can have 2 MHTs at most.
            // BFS from the leaves until the number 
            // of the unvisited nodes is less than 3.
            while (unvisited.size() > 2) {
                cur_level.clear();
                for (const auto& u : pre_level) {
                    unvisited.erase(u);
                    for (const auto& v : neighbors[u]) {
                        if (unvisited.count(v)) { 
                            neighbors[v].erase(u);
                            if (neighbors[v].size() == 1) {
                                cur_level.emplace_back(v);
                            }
                        }
                    }
                }
                swap(pre_level, cur_level);
            }
    
            vector<int> res(unvisited.begin(), unvisited.end());
            return res;
        }
    };
    

      

      

    类似题目:

    Course Schedule II

    Course Schedule

    Clone Graph

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    OBV15 案例2
    OBV_X3
    涨停板割韭菜走势
    谁有stanford ner训练语料
    CUDA从入门到精通
    MatLab 2014a编译jar包时mcc无法使用的问题
    安装office2013时弹出microsoft setup bootstrapper已停止工作,接着就不能安装了
    Lingo 做线性规划
    C# 连接Paradox DB
    Numpy 数组的切片操作
  • 原文地址:https://www.cnblogs.com/lightwindy/p/9583796.html
Copyright © 2011-2022 走看看