zoukankan      html  css  js  c++  java
  • [LeetCode] 787. Cheapest Flights Within K Stops K次转机内的最便宜航班

    There are n cities connected by m flights. Each fight starts from city and arrives at v with a price w.

    Now given all the cities and fights, together with starting city src and the destination dst, your task is to find the cheapest price from src to dst with up to k stops. If there is no such route, output -1.

    Example 1:
    Input: 
    n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
    src = 0, dst = 2, k = 1
    Output: 200
    Explanation: 
    The graph looks like this:
    

    The cheapest price from city 0 to city 2 with at most 1 stop costs 200, as marked red in the picture.
    Example 2:
    Input: 
    n = 3, edges = [[0,1,100],[1,2,100],[0,2,500]]
    src = 0, dst = 2, k = 0
    Output: 500
    Explanation: 
    The graph looks like this:
    

    The cheapest price from city 0 to city 2 with at most 0 stop costs 500, as marked blue in the picture.

    Note:

    • The number of nodes n will be in range [1, 100], with nodes labeled from 0 to n - 1.
    • The size of flights will be in range [0, n * (n - 1) / 2].
    • The format of each flight will be (src, dst, price).
    • The price of each flight will be in the range [1, 10000].
    • k is in the range of [0, n - 1].
    • There will not be any duplicated flights or self cycles.

    解法:Dijkstra's algorithm, 

    Java:

    class Solution {
        public int findCheapestPrice(int n, int[][] flights, int src, int dst, int K) {
            Map<Integer, Map<Integer, Integer>> prices = new HashMap<>();
            for (int[] f : flights) {
                if (!prices.containsKey(f[0])) prices.put(f[0], new HashMap<>());
                prices.get(f[0]).put(f[1], f[2]);
            }
            Queue<int[]> pq = new PriorityQueue<>((a, b) -> (Integer.compare(a[0], b[0])));
            pq.add(new int[] {0, src, k + 1});
            while (!pq.isEmpty()) {
                int[] top = pq.remove();
                int price = top[0];
                int city = top[1];
                int stops = top[2];
                if (city == dst) return price;
                if (stops > 0) {
                    Map<Integer, Integer> adj = prices.getOrDefault(city, new HashMap<>());
                    for (int a : adj.keySet()) {
                        pq.add(new int[] {price + adj.get(a), a, stops - 1});
                    }
                }
            }
            return -1;
        }      
    } 

    Python:

    class Solution(object):
        def findCheapestPrice(self, n, flights, src, dst, K):
            """
            :type n: int
            :type flights: List[List[int]]
            :type src: int
            :type dst: int
            :type K: int
            :rtype: int
            """
            adj = collections.defaultdict(list)
            for u, v, w in flights:
                adj[u].append((v, w))
            best = collections.defaultdict(lambda: collections.defaultdict(lambda: float("inf")))
            min_heap = [(0, src, K+1)]
            while min_heap:
                result, u, k = heapq.heappop(min_heap)
                if k < 0 or best[u][k] < result:
                    continue
                if u == dst:
                    return result
                for v, w in adj[u]:
                    if result+w < best[v][k-1]:
                        best[v][k-1] = result+w                    
                        heapq.heappush(min_heap, (result+w, v, k-1))
            return -1
    

    Python:

    class Solution(object):
        def findCheapestPrice(self, n, flights, src, dst, K):
            """
            :type n: int
            :type flights: List[List[int]]
            :type src: int
            :type dst: int
            :type K: int
            :rtype: int
            """
            f = collections.defaultdict(dict)
            for a, b, p in flights:
                f[a][b] = p
            heap = [(0, src, k + 1)]
            while heap:
                p, i, k = heapq.heappop(heap)
                if i == dst:
                    return p
                if k > 0:
                    for j in f[i]:
                        heapq.heappush(heap, (p + f[i][j], j, k - 1))
            return -1  

    C++:

    // Time:  O((|E| + |V|) * log|V|) = O(|E| * log|V|)
    // Space: O(|E| + |V|) = O(|E|)
    
    class Solution {
    public:
        int findCheapestPrice(int n, vector<vector<int>>& flights, int src, int dst, int K) {
            using P = pair<int, int>;
            unordered_map<int, vector<P>> adj;
            for (const auto& flight : flights) {
                int u, v, w;
                tie(u, v, w) = make_tuple(flight[0], flight[1], flight[2]);
                adj[u].emplace_back(v, w);
            }
            
            unordered_map<int, unordered_map<int, int>> best;
            using T = tuple<int, int, int>;
            priority_queue<T, vector<T>, greater<T>> min_heap;
            min_heap.emplace(0, src, K + 1);
            while (!min_heap.empty()) {
                int result, u, k;
                tie(result, u, k) = min_heap.top(); min_heap.pop();
                if (k < 0 ||
                    (best.count(u) && best[u].count(k) &&  best[u][k] < result)) {
                    continue;
                }
                if (u == dst) {
                    return result;
                }
                for (const auto& kvp : adj[u]) {
                    int v, w;
                    tie(v, w) = kvp;
                    if (!best.count(v) ||
                        !best[v].count(k - 1) ||
                        result + w < best[v][k - 1]) {
                        best[v][k - 1] = result + w;
                        min_heap.emplace(result + w, v, k - 1);
                    }
                }
            }
            return -1;
        }
    };
    

        

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    【题解】P3388 【模板】割点(割顶)
    【题解】T156527 直角三角形
    【题解】T156526 各数字之和
    【题解】P5318 【深基18.例3】查找文献
    数据结构:邻接表
    【题解】P3387 【模板】缩点
    全网最最详细!一文讲懂Tarjan算法求强连通分量&缩点
    vue组件间通信
    vue实现头像上传
    解读JavaScript中的Hoisting机制(js变量声明提升机制)
  • 原文地址:https://www.cnblogs.com/lightwindy/p/9613690.html
Copyright © 2011-2022 走看看