zoukankan      html  css  js  c++  java
  • [LeetCode] 685. Redundant Connection II 冗余的连接之 II

    In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) for which all other nodes are descendants of this node, plus every node has exactly one parent, except for the root node which has no parents.

    The given input is a directed graph that started as a rooted tree with N nodes (with distinct values 1, 2, ..., N), with one additional directed edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

    The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] that represents a directed edge connecting nodes u and v, where u is a parent of child v.

    Return an edge that can be removed so that the resulting graph is a rooted tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array.

    Example 1:

    Input: [[1,2], [1,3], [2,3]]
    Output: [2,3]
    Explanation: The given directed graph will be like this:
      1
     / 
    v   v
    2-->3 

    Example 2:

    Input: [[1,2], [2,3], [3,4], [4,1], [1,5]]
    Output: [4,1]
    Explanation: The given directed graph will be like this:
    5 <- 1 -> 2
         ^    |
         |    v
         4 <- 3

    Note:

    • The size of the input 2D-array will be between 3 and 1000.
    • Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.

    684. Redundant Connection 的拓展,684题给的是无向图,只需要删掉组成环的最后一条边即可,检测环就行了。这题给的是有向图,就复杂多了,有多种情况存在,比如例子1就是无环,但是有入度为2的结点3。再比如例子2是有环,但是没有入度为2的结点。还有一种情况例子没有给出,就是既有环,又有入度为2的结点。

    解法:Union find

    There are two cases for the tree structure to be invalid.
    1) A node having two parents;
    including corner case: e.g. [[4,2],[1,5],[5,2],[5,3],[2,4]]
    2) A circle exists

    If we can remove exactly 1 edge to achieve the tree structure, a single node can have at most two parents. 

    1) Check whether there is a node having two parents.
    If so, store them as candidates A and B, and set the second edge invalid.
    2) Perform normal union find.

    If the tree is now valid
        simply return candidate B
    else if candidates not existing
        we find a circle, return current edge;
    else
        remove candidate A instead of B.

    Java:

    class Solution {
        public int[] findRedundantDirectedConnection(int[][] edges) {
            int[] can1 = {-1, -1};
            int[] can2 = {-1, -1};
            int[] parent = new int[edges.length + 1];
            for (int i = 0; i < edges.length; i++) {
                if (parent[edges[i][1]] == 0) {
                    parent[edges[i][1]] = edges[i][0];
                } else {
                    can2 = new int[] {edges[i][0], edges[i][1]};
                    can1 = new int[] {parent[edges[i][1]], edges[i][1]};
                    edges[i][1] = 0;
                }
            }
            for (int i = 0; i < edges.length; i++) {
                parent[i] = i;
            }
            for (int i = 0; i < edges.length; i++) {
                if (edges[i][1] == 0) {
                    continue;
                }
                int child = edges[i][1], father = edges[i][0];
                if (root(parent, father) == child) {
                    if (can1[0] == -1) {
                        return edges[i];
                    }
                    return can1;
                }
                parent[child] = father;
            }
            return can2;
        }
        
        int root(int[] parent, int i) {
            while (i != parent[i]) {
                parent[i] = parent[parent[i]];
                i = parent[i];
            }   
            return i;
        }
    }
    

    Python:

    # Time:  O(nlog*n) ~= O(n), n is the length of the positions
    # Space: O(n)
    class UnionFind(object):
        def __init__(self, n):
            self.set = range(n)
            self.count = n
    
        def find_set(self, x):
            if self.set[x] != x:
                self.set[x] = self.find_set(self.set[x])  # path compression.
            return self.set[x]
    
        def union_set(self, x, y):
            x_root, y_root = map(self.find_set, (x, y))
            if x_root == y_root or 
               y != y_root:  # already has a father
                return False
            self.set[y_root] = x_root
            self.count -= 1
            return True
    
    
    class Solution(object):
        def findRedundantDirectedConnection(self, edges):
            """
            :type edges: List[List[int]]
            :rtype: List[int]
            """
            union_find = UnionFind(len(edges)+1)
            for edge in edges:
                if not union_find.union_set(*edge):
                    return edge
            return []  

    C++:

    class Solution {
    public:
        vector<int> findRedundantDirectedConnection(vector<vector<int>>& edges) {
            int n = edges.size();
            vector<int> parent(n+1, 0), candA, candB;
            // step 1, check whether there is a node with two parents
            for (auto &edge:edges) {
                if (parent[edge[1]] == 0)
                    parent[edge[1]] = edge[0]; 
                else {
                    candA = {parent[edge[1]], edge[1]};
                    candB = edge;
                    edge[1] = 0;
                }
            } 
            // step 2, union find
            for (int i = 1; i <= n; i++) parent[i] = i;
            for (auto &edge:edges) {
                if (edge[1] == 0) continue;
                int u = edge[0], v = edge[1], pu = root(parent, u);
                // Now every node only has 1 parent, so root of v is implicitly v
                if (pu == v) {
                    if (candA.empty()) return edge;
                    return candA;
                }
                parent[v] = pu;
            }
            return candB;
        }
    private:
        int root(vector<int>& parent, int k) {
            if (parent[k] != k) 
                parent[k] = root(parent, parent[k]);
            return parent[k];
        }
    };
    

     

    类似题目:

    [LeetCode] 684. Redundant Connection 冗余的连接

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    浅析椭圆曲线加密算法(ECC)
    比特币原理——交易与UTXO
    比特币白皮书-学习笔记
    python SMTP邮件发送
    Linux : Forks()
    IS: [=Burp Suite No.4=]Burp Suite /Scanner/ and /Intruder/
    IS: [=Burp Suite No.3=]Burp Suite /Target/ and /Spider/
    IS: [=Burp Suite No.2=]Burp Suite SSL and advanced options
    IS: [=Burp Suite No.1=]Burp Suite install and configuration
    IS: WMIC command use
  • 原文地址:https://www.cnblogs.com/lightwindy/p/9795726.html
Copyright © 2011-2022 走看看