zoukankan      html  css  js  c++  java
  • [LeetCode] 750. Number Of Corner Rectangles 边角矩形的数量

    Given a grid where each entry is only 0 or 1, find the number of corner rectangles.

    corner rectangle is 4 distinct 1s on the grid that form an axis-aligned rectangle. Note that only the corners need to have the value 1. Also, all four 1s used must be distinct.

    Example 1:

    Input: grid = 
    [[1, 0, 0, 1, 0],
     [0, 0, 1, 0, 1],
     [0, 0, 0, 1, 0],
     [1, 0, 1, 0, 1]]
    Output: 1
    Explanation: There is only one corner rectangle, with corners grid[1][2], grid[1][4], grid[3][2], grid[3][4].

    Example 2:

    Input: grid = 
    [[1, 1, 1],
     [1, 1, 1],
     [1, 1, 1]]
    Output: 9
    Explanation: There are four 2x2 rectangles, four 2x3 and 3x2 rectangles, and one 3x3 rectangle.

    Example 3:

    Input: grid = 
    [[1, 1, 1, 1]]
    Output: 0
    Explanation: Rectangles must have four distinct corners. 

    Note:

    1. The number of rows and columns of grid will each be in the range [1, 200].
    2. Each grid[i][j] will be either 0 or 1.
    3. The number of 1s in the grid will be at most 6000.

    给了一个由0和1组成的二维数组,定义了一种边角矩形,其四个顶点均为1,求这个二维数组中有多少个不同的边角矩形。

    不能一个一个的数,先固定2行,求每列与这2行相交是不是都是1 ,计算这样的列数,然后用公式:n*(n-1)/2,得出能组成的边角矩形,累加到结果中。

    解法:枚举,枚举任意两行r1和r2,看这两行中存在多少列,满足在该列中第r1行和第r2行中对应的元素都是1。假设有counter列满足条件,那么这两行可以构成的的recangles的数量就是counter * (counter - 1) / 2。最后返回所有rectangles的数量即可。如果假设grid一共有m行n列,时间复杂度就是O(m^2n),空间复杂度是O(1)。如果m远大于n的时候,还可以将时间复杂度优化到O(mn^2)。

    Java:

    class Solution {
        public int countCornerRectangles(int[][] grid) {
            int m = grid.length, n = grid[0].length;
            int ans = 0;
            for (int x = 0; x < m; x++) {
                for (int y = x + 1; y < m; y++) {
                    int cnt = 0;
                    for (int z = 0; z < n; z++) {
                        if (grid[x][z] == 1 && grid[y][z] == 1) {
                            cnt++;
                        }
                    }
                    ans += cnt * (cnt - 1) / 2;
                }
            }
            return ans;
        }
    }  

    Python:

    def countCornerRectangles(self, grid):
            """
            :type grid: List[List[int]]
            :rtype: int
            """
            n = len(grid)
            m = len(grid[0])
            res = 0
            for i in xrange(n):
                for j in xrange(i + 1, n):
                    np = 0
                    for k in xrange(m):
                        if grid[i][k] and grid[j][k]:
                            np += 1
    
                    res += np * (np - 1) / 2
            return res 

    Python:

    # Time:  O(n * m^2), n is the number of rows with 1s, m is the number of cols with 1s
    # Space: O(n * m)
    class Solution(object):
        def countCornerRectangles(self, grid):
            """
            :type grid: List[List[int]]
            :rtype: int
            """
            rows = [[c for c, val in enumerate(row) if val]
                    for row in grid]
            result = 0
            for i in xrange(len(rows)):
                lookup = set(rows[i])
                for j in xrange(i):
                    count = sum(1 for c in rows[j] if c in lookup)
                    result += count*(count-1)/2
            return result
    

    C++: 暴力,不好

    class Solution {
    public:
        int countCornerRectangles(vector<vector<int>>& grid) {
            int m = grid.size(), n = grid[0].size(), res = 0;
            for (int i = 0; i < m; ++i) {
                for (int j = 0; j < n; ++j) {
                    if (grid[i][j] == 0) continue;
                    for (int h = 1; h < m - i; ++h) {
                        if (grid[i + h][j] == 0) continue;
                        for (int w = 1; w < n - j; ++w) {
                            if (grid[i][j + w] == 1 && grid[i + h][j + w] == 1) ++res;
                        }
                    }
                }
            }
            return res;
        }
    };  

    C++:

    // Time:  O(m^2 * n), m is the number of rows with 1s, n is the number of cols with 1s
    // Space: O(m * n)
    class Solution {
    public:
        int countCornerRectangles(vector<vector<int>>& grid) {
            vector<vector<int>> rows;
            for (int i = 0; i < grid.size(); ++i) {
                vector<int> row;
                for (int j = 0; j < grid[i].size(); ++j) {
                    if (grid[i][j]) {
                        row.emplace_back(j);
                    }
                }
                if (!row.empty()) {
                    rows.emplace_back(move(row));
                }
            }
            int result = 0;
            for (int i = 0; i < rows.size(); ++i) {
                unordered_set<int> lookup(rows[i].begin(), rows[i].end());
                for (int j = 0; j < i; ++j) {
                    int count = 0;
                    for (const auto& c : rows[j]) {
                        count += lookup.count(c);
                    }
                    result += count * (count - 1) / 2;
                }
            }
            return result;
        }
    };
    

    C++:

    class Solution {
    public:
        int countCornerRectangles(vector<vector<int>>& grid) {
            int ans = 0;
            for (int r1 = 0; r1 + 1 < grid.size(); ++r1) {
                for (int r2 = r1 + 1; r2 < grid.size(); ++r2) {
                    int counter = 0;
                    for (int c = 0; c < grid[0].size(); ++c) {
                        if (grid[r1][c] == 1 && grid[r2][c] == 1) {
                            ++counter;
                        }
                    }
                    ans += counter * (counter - 1) / 2;
                }
            }
            return ans;
        }
    };
    

      

      

      

    All LeetCode Questions List 题目汇总

  • 相关阅读:
    C#遍历List并删除某个或者几个元素的方法
    7月清北学堂培训 Day 4
    7月清北学堂培训 Day 3
    7月清北学堂培训 Day 2
    7月清北学堂培训 Day 1
    P1383 高级打字机
    P2401 不等数列
    P1412 经营与开发
    P1314 聪明的质监员
    2019.7.9 校内测试 T3 15数码问题
  • 原文地址:https://www.cnblogs.com/lightwindy/p/9796153.html
Copyright © 2011-2022 走看看