zoukankan      html  css  js  c++  java
  • HDU 4965 Fast Matrix Calculation(矩阵高速幂)

    题目大意:给你两个数字n和k,然后给你两个矩阵a是n*k的和b是k*n的,矩阵c = a*b,让你求c^(n*n)。

    直接求的话c是n*n的矩阵所以是1000*1000。会超时的啊。

    能够转化一下:(a*b)^(n*n)=a*(b*a)^(n*n-1)*b。b*a能够得到一个k*k的矩阵,k非常小所以不会超时。高速幂一下就能够了啊。

    Fast Matrix Calculation

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 717    Accepted Submission(s): 355


    Problem Description
    One day, Alice and Bob felt bored again, Bob knows Alice is a girl who loves math and is just learning something about matrix, so he decided to make a crazy problem for her.

    Bob has a six-faced dice which has numbers 0, 1, 2, 3, 4 and 5 on each face. At first, he will choose a number N (4 <= N <= 1000), and for N times, he keeps throwing his dice for K times (2 <=K <= 6) and writes down its number on the top face to make an N*K matrix A, in which each element is not less than 0 and not greater than 5. Then he does similar thing again with a bit difference: he keeps throwing his dice for N times and each time repeat it for K times to write down a K*N matrix B, in which each element is not less than 0 and not greater than 5. With the two matrix A and B formed, Alice’s task is to perform the following 4-step calculation.

    Step 1: Calculate a new N*N matrix C = A*B.
    Step 2: Calculate M = C^(N*N). 
    Step 3: For each element x in M, calculate x % 6. All the remainders form a new matrix M’.
    Step 4: Calculate the sum of all the elements in M’. 

    Bob just made this problem for kidding but he sees Alice taking it serious, so he also wonders what the answer is. And then Bob turn to you for help because he is not good at math.
     

    Input
    The input contains several test cases. Each test case starts with two integer N and K, indicating the numbers N and K described above. Then N lines follow, and each line has K integers between 0 and 5, representing matrix A. Then K lines follow, and each line has N integers between 0 and 5, representing matrix B.

    The end of input is indicated by N = K = 0.
     

    Output
    For each case, output the sum of all the elements in M’ in a line.
     

    Sample Input
    4 2 5 5 4 4 5 4 0 0 4 2 5 5 1 3 1 5 6 3 1 2 3 0 3 0 2 3 4 4 3 2 2 5 5 0 5 0 3 4 5 1 1 0 5 3 2 3 3 2 3 1 5 4 5 2 0 0
     

    Sample Output
    14 56
     

    Author
    SYSU
     

    Source
     
    #include <algorithm>
    #include <iostream>
    #include <stdlib.h>
    #include <string.h>
    #include <iomanip>
    #include <stdio.h>
    #include <string>
    #include <queue>
    #include <cmath>
    #include <stack>
    #include <map>
    #include <set>
    #define eps 1e-10
    ///#define M 1000100
    ///#define LL __int64
    #define LL long long
    ///#define INF 0x7ffffff
    #define INF 0x3f3f3f3f
    #define PI 3.1415926535898
    #define zero(x) ((fabs(x)<eps)?0:x)
    
    using namespace std;
    
    const int maxn = 1010;
    
    #define mod 6
    
    struct matrix
    {
        int f[6][6];
    };
    
    int A[maxn][maxn];
    int B[maxn][maxn];
    int C[maxn][maxn];
    int D[maxn][maxn];
    
    matrix mul(matrix a, matrix b, int n)
    {
        matrix c;
        memset(c.f, 0, sizeof(c.f));
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < n; j++)
            {
                for(int k = 0; k < n; k++) c.f[i][j] += a.f[i][k]*b.f[k][j];
                c.f[i][j] %= 6;
            }
        }
        return c;
    }
    
    matrix pow_mod(matrix a, int b, int n)
    {
        matrix s;
        memset(s.f, 0 , sizeof(s.f));
        for(int i = 0; i < n; i++) s.f[i][i] = 1;
        while(b)
        {
            if(b&1) s = mul(s, a, n);
            a = mul(a, a, n);
            b >>= 1;
        }
        return s;
    }
    
    int main()
    {
        int n, k;
        while(cin >>n>>k)
        {
            if(!n && !k) break;
            for(int i = 0; i < n; i++)
                for(int j = 0; j < k; j++) scanf("%d",&A[i][j]);
            for(int i = 0; i < k; i++)
                for(int j = 0; j < n; j++) scanf("%d",&B[i][j]);
            matrix c;
            memset(c.f, 0, sizeof(c.f));
            for(int i = 0; i < k; i++)
            {
                for(int j = 0; j < k; j++)
                {
                    for(int jj = 0; jj < n; jj++) c.f[i][j] += B[i][jj]*A[jj][j];
                    c.f[i][j] %= mod;
                }
            }
            c = pow_mod(c, n*n-1, k);
            memset(C, 0, sizeof(C));
            memset(D, 0, sizeof(D));
            for(int  i = 0; i < n; i++)
            {
                for(int j = 0; j < k; j++)
                {
                    for(int jj = 0; jj < k; jj++) C[i][j] += A[i][jj]*c.f[jj][j];
                    C[i][j] %= mod;
                }
            }
            int ans = 0;
            for(int i = 0; i < n; i++)
            {
                for(int j = 0; j < n; j++)
                {
                    for(int jj = 0; jj < k; jj++) D[i][j] += C[i][jj]*B[jj][j];
                    D[i][j] %= mod;
                    ans += D[i][j];
                }
            }
            cout<<ans<<endl;
        }
        return 0;
    }
    


  • 相关阅读:
    Ajax学习网址收集
    Crystal Report Download URL and SN
    svn eclipse unable to load default svn client的解决办法
    Effective C++:条款08:别让异常逃离析构函数 (Prevent exceptions from leaving destructors.)
    Effective C++:条款07:为多态基类声明virtual析构函数 (Declare destructors virtual in polymorphic base classes.)
    Effective C++:条款06:若不想使用编译器自动生成的函数,就该明确拒绝 (Explicitly disallow the use of compliergenerated functions you do not want.)
    #define高级教程
    Effective C++:条款04:确定对象被使用前已先被初始化 (Make sure that objects are initialized before they're used.)
    Effective C++:条款05:了解C++默默编写并调用哪些函数 (Know what functions C++ silently writes and calls.)
    Linq 调用存储过程(转)
  • 原文地址:https://www.cnblogs.com/liguangsunls/p/6866416.html
Copyright © 2011-2022 走看看