这篇讲讲ReentrantReadWriteLock可重入读写锁,它不仅是读写锁的实现,而且支持可重入性。 聊聊高并发(十五)实现一个简单的读-写锁(共享-排他锁) 这篇讲了怎样模拟一个读写锁。
可重入的读写锁的特点是
1. 当有线程获取读锁时,不同意再有线程获得写锁
2. 当有线程获得写锁时。不同意其它线程获得读锁和写锁
这里隐含着几层含义:
static final int SHARED_SHIFT = 16; static final int SHARED_UNIT = (1 << SHARED_SHIFT); static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1; static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1; /** Returns the number of shared holds represented in count */ static int sharedCount(int c) { return c >>> SHARED_SHIFT; } /** Returns the number of exclusive holds represented in count */ static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
1. 能够同一时候有多个线程同一时候获得读锁,进入临界区。这时候的读锁的行为和Semaphore信号量是类似的
2. 因为是可重入的。所以1个线程假设获得了读锁,那么它能够重入这个读锁
3. 假设1个线程获得了读锁。那么它不能同一时候再获得写锁,这个就是所谓的“锁升级”,读锁升级到写锁可能会造成死锁,所以是不同意的
4. 假设1个线程获得了写锁,那么不同意其它线程再获得读锁和写锁,可是它自己能够获得读锁,就是所谓的“锁降级”,锁降级是同意的
关于读写锁的实现还要考虑的几个要点:
1. 释放锁时的优先级问题。是让写锁先获得还是先让读锁先获得
2. 是否同意读线程插队
3. 是否同意写线程插队。由于读写锁一般用在大量读,少量写的情况,假设写线程没有优先级,那么可能造成写线程的饥饿
4. 锁的升降级问题,通常是同意1个线程的写锁降级为读锁,不同意读锁升级成写锁
带着问题看看ReentrantReadWriteLock的源代码。 它相同提供了Sync来继承AQS并提供扩展,可是它的Sync相比較Semaphore和CountDownLatch要更加复杂。
1. 把State状态作为一个读写锁的计数器,包含了重入的次数。
state是32位的int值,所以把高位16位作为读锁的计数器,低位的16位作为写锁的计数器,并提供了响应的读写这两个计数器的位操作方法。
计算sharedCount时,採用无符号的移位操作,右移16位就是读锁计数器的值
写锁直接用EXCLUSIVE_MASK和state做与运算。EXCLUSIVE_MASK的值是00000000000000001111111111111111,相当于计算了低位16位的值
须要注意计算出来的值包括了重入的次数。
所以MAX_COUNT限定了最大值是2^17 - 1
static final int SHARED_SHIFT = 16; static final int SHARED_UNIT = (1 << SHARED_SHIFT); static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1; static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1; /** Returns the number of shared holds represented in count */ static int sharedCount(int c) { return c >>> SHARED_SHIFT; } /** Returns the number of exclusive holds represented in count */ static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
HoldCount类用来计算1个线程的重入次数,并使用了1个ThreadLocal类型的HoldCounter,能够记录每一个线程的锁的重入次数。 cachedHoldCounter记录了最后1个获取读锁的线程的重入次数。 firstReader指向了第一个获取读锁的线程,firstReaderHoldCounter记录了第一个获取读锁的线程的重入次数
static final class HoldCounter { int count = 0; // Use id, not reference, to avoid garbage retention final long tid = Thread.currentThread().getId(); } /** * ThreadLocal subclass. Easiest to explicitly define for sake * of deserialization mechanics. */ static final class ThreadLocalHoldCounter extends ThreadLocal<HoldCounter> { public HoldCounter initialValue() { return new HoldCounter(); } } /** * The hold count of the last thread to successfully acquire * readLock. This saves ThreadLocal lookup in the common case * where the next thread to release is the last one to * acquire. This is non-volatile since it is just used * as a heuristic, and would be great for threads to cache. * * <p>Can outlive the Thread for which it is caching the read * hold count, but avoids garbage retention by not retaining a * reference to the Thread. * * <p>Accessed via a benign data race; relies on the memory * model's final field and out-of-thin-air guarantees. */ private transient HoldCounter cachedHoldCounter;
Sync提供了两个抽象方法给子类扩展。用来表示读锁和写锁是否应该堵塞等待
/** * Returns true if the current thread, when trying to acquire * the read lock, and otherwise eligible to do so, should block * because of policy for overtaking other waiting threads. */ abstract boolean readerShouldBlock(); /** * Returns true if the current thread, when trying to acquire * the write lock, and otherwise eligible to do so, should block * because of policy for overtaking other waiting threads. */ abstract boolean writerShouldBlock();
写锁的tryXXX获取和释放
1. 写锁释放时,因为没有其它线程获得临界区。它的tryRelease()方法仅仅须要设置状态的值。通过exclusiveCount计算写锁的计数器,假设为0表示释放了写锁,就把exclusiveOwnerThread设置为null.
2. 写锁的tryAcquire获取时。
先推断状态是否为0,为0表示没有线程获得锁,就能够直接设置状态。然后把exclusiveOwnerThread设置为当前线程
假设状态不为0,那表示有几种可能:写锁为0。读锁不为0。写锁不为0。读锁为0。写锁不为0,读锁也不为0。
所以它先推断写锁是否为0。写锁为0,那么表示读锁肯定不会为0,就失败,
或者写锁不为0,可是exclusiveOwnerThread不是自己。那么表示已经有其它线程获得了写锁,就失败
写锁不为0,而且exclusiveOwnerThread是自己。那么肯定表示是写锁的重入的情况,所以设置state状态。返回成功。
protected final boolean tryRelease(int releases) { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); int nextc = getState() - releases; boolean free = exclusiveCount(nextc) == 0; if (free) setExclusiveOwnerThread(null); setState(nextc); return free; } protected final boolean tryAcquire(int acquires) { /* * Walkthrough: * 1. If read count nonzero or write count nonzero * and owner is a different thread, fail. * 2. If count would saturate, fail. (This can only * happen if count is already nonzero.) * 3. Otherwise, this thread is eligible for lock if * it is either a reentrant acquire or * queue policy allows it. If so, update state * and set owner. */ Thread current = Thread.currentThread(); int c = getState(); int w = exclusiveCount(c); if (c != 0) { // (Note: if c != 0 and w == 0 then shared count != 0) if (w == 0 || current != getExclusiveOwnerThread()) return false; if (w + exclusiveCount(acquires) > MAX_COUNT) throw new Error("Maximum lock count exceeded"); // Reentrant acquire setState(c + acquires); return true; } if (writerShouldBlock() || !compareAndSetState(c, c + acquires)) return false; setExclusiveOwnerThread(current); return true; }
读锁的tryXXX获取和释放
1. 读锁释放时基于共享的方式,改动线程各自的HoldCounter的值。最后採用位操作改动位于state的整体的读锁计数器。tryReleaseShared()之后详细的释放兴许线程的操作由AQS依据队列状态来决定。
2. 读所获取时先看写锁的计数器,假设写锁已经被获取。而且不是当前线程所获取的。就直接失败返回
这里会进行一次高速路径获取,尝试获取一次,假设readShouldBlock()返回false,而且CAS操作成功了,意思是能够获得锁,就更新相关读锁计数器
否则就进行轮询方式的获取fullTryAcquireShared()
也就是说假设当前没有线程获取写锁,或者是自己获取写锁。就能够获取读锁
一个线程获取了写锁之后,它还能够获取读锁,也就是所谓的“锁降级”,但这时候其它线程无法获取读锁。在检查到有其它写锁存在时就退出了
protected final boolean tryReleaseShared(int unused) { Thread current = Thread.currentThread(); if (firstReader == current) { // assert firstReaderHoldCount > 0; if (firstReaderHoldCount == 1) firstReader = null; else firstReaderHoldCount--; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != current.getId()) rh = readHolds.get(); int count = rh.count; if (count <= 1) { readHolds.remove(); if (count <= 0) throw unmatchedUnlockException(); } --rh.count; } for (;;) { int c = getState(); int nextc = c - SHARED_UNIT; if (compareAndSetState(c, nextc)) // Releasing the read lock has no effect on readers, // but it may allow waiting writers to proceed if // both read and write locks are now free. return nextc == 0; } } protected final int tryAcquireShared(int unused) { /* * Walkthrough: * 1. If write lock held by another thread, fail. * 2. Otherwise, this thread is eligible for * lock wrt state, so ask if it should block * because of queue policy. If not, try * to grant by CASing state and updating count. * Note that step does not check for reentrant * acquires, which is postponed to full version * to avoid having to check hold count in * the more typical non-reentrant case. * 3. If step 2 fails either because thread * apparently not eligible or CAS fails or count * saturated, chain to version with full retry loop. */ Thread current = Thread.currentThread(); int c = getState(); if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return -1; int r = sharedCount(c); if (!readerShouldBlock() && r < MAX_COUNT && compareAndSetState(c, c + SHARED_UNIT)) { if (r == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != current.getId()) cachedHoldCounter = rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; } return 1; } return fullTryAcquireShared(current); } /** * Full version of acquire for reads, that handles CAS misses * and reentrant reads not dealt with in tryAcquireShared. */ final int fullTryAcquireShared(Thread current) { /* * This code is in part redundant with that in * tryAcquireShared but is simpler overall by not * complicating tryAcquireShared with interactions between * retries and lazily reading hold counts. */ HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != current.getId()) rh = readHolds.get(); for (;;) { int c = getState(); int w = exclusiveCount(c); if ((w != 0 && getExclusiveOwnerThread() != current) || ((rh.count | w) == 0 && readerShouldBlock(current))) return -1; if (sharedCount(c) == MAX_COUNT) throw new Error("Maximum lock count exceeded"); if (compareAndSetState(c, c + SHARED_UNIT)) { cachedHoldCounter = rh; // cache for release rh.count++; return 1; } } }
tryWriteLock和tryReadLock操作和上面的操作类似,它们是读写锁的tryLock()的实际实现,表示尝试获取一次锁
1. tryWriteLock方法尝试获得写锁,先推断状态是否为0,为0而且CAS操作成功就表示获得锁。假设状态不为0,就推断写锁计数器的值。假设写锁计数器为0就表示存在读锁,就返回失败。获取写锁不为0,可是不是当前线程所获取的,也返回失败。仅仅有写锁不为0而且是当前线程自己获取的写锁,就是所谓的写锁重入操作。
CAS成功后就表示获得写锁
final boolean tryWriteLock() { Thread current = Thread.currentThread(); int c = getState(); if (c != 0) { int w = exclusiveCount(c); if (w == 0 ||current != getExclusiveOwnerThread()) return false; if (w == MAX_COUNT) throw new Error("Maximum lock count exceeded"); } if (!compareAndSetState(c, c + 1)) return false; setExclusiveOwnerThread(current); return true; } final boolean tryReadLock() { Thread current = Thread.currentThread(); for (;;) { int c = getState(); if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return false; if (sharedCount(c) == MAX_COUNT) throw new Error("Maximum lock count exceeded"); if (compareAndSetState(c, c + SHARED_UNIT)) { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != current.getId()) cachedHoldCounter = rh = readHolds.get(); rh.count++; return true; } } }
ReentrantReadWriteLock也提供了非公平和公平的两个Sync版本号
非公平的版本号中
1. 写锁总是优先获取。不考虑AQS队列中先来的线程
2. 读锁也不按FIFO队列排队,而是看当前获得锁是否是写锁,假设是写锁,就等待。否则就尝试获得锁
而公平版本号中
1. 假设有其它锁存在,获取写锁操作就失败。应该(should)进AQS队列等待
2. 假设有其它锁存在。获取读锁操作就失败。应该(should)进AQS队列等待
final static class NonfairSync extends Sync { private static final long serialVersionUID = -8159625535654395037L; final boolean writerShouldBlock(Thread current) { return false; // writers can always barge } final boolean readerShouldBlock(Thread current) { /* As a heuristic to avoid indefinite writer starvation, * block if the thread that momentarily appears to be head * of queue, if one exists, is a waiting writer. This is * only a probablistic effect since a new reader will not * block if there is a waiting writer behind other enabled * readers that have not yet drained from the queue. */ return apparentlyFirstQueuedIsExclusive(); } } /** * Fair version of Sync */ final static class FairSync extends Sync { private static final long serialVersionUID = -2274990926593161451L; final boolean writerShouldBlock(Thread current) { // only proceed if queue is empty or current thread at head return !isFirst(current); } final boolean readerShouldBlock(Thread current) { // only proceed if queue is empty or current thread at head return !isFirst(current); } }
详细ReadLock和WriteLock的实现就是依赖Sync来实现的,默认是非公平版本号的Sync。
读锁採用共享默认的AQS,它提供了中断/不可中断的lock操作,tryLock操作,限时的tryLock操作。
值得注意的时读锁不支持newCondition操作。
public static class ReadLock implements Lock, java.io.Serializable { private static final long serialVersionUID = -5992448646407690164L; private final Sync sync; protected ReadLock(ReentrantReadWriteLock lock) { sync = lock.sync; } public void lock() { sync.acquireShared(1); } public void lockInterruptibly() throws InterruptedException { sync.acquireSharedInterruptibly(1); } public boolean tryLock() { return sync.tryReadLock(); } public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException { return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout)); } public void unlock() { sync.releaseShared(1); } public Condition newCondition() { throw new UnsupportedOperationException(); }
WriteLock基于独占模式的AQS,它提供了中断/不可中断的lock操作。tryLock操作,限时的tryLock操作
public static class WriteLock implements Lock, java.io.Serializable { private static final long serialVersionUID = -4992448646407690164L; private final Sync sync; protected WriteLock(ReentrantReadWriteLock lock) { sync = lock.sync; } public void lock() { sync.acquire(1); } public void lockInterruptibly() throws InterruptedException { sync.acquireInterruptibly(1); } public boolean tryLock( ) { return sync.tryWriteLock(); } public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException { return sync.tryAcquireNanos(1, unit.toNanos(timeout)); } public void unlock() { sync.release(1); } public Condition newCondition() { return sync.newCondition(); }
最后再说一下AQS和各种同步器实现的关系,AQS提供了同步队列和条件队列的管理。包含各种情况下的入队出队操作。
而同步器子类实现了tryAcquire和tryRelease方法来操作状态。来表示什么情况下能够直接获得锁而不须要进入AQS。什么情况下获取锁失败则须要进入AQS队列等待