zoukankan      html  css  js  c++  java
  • 聊聊高并发(二十八)解析java.util.concurrent各个组件(十) 理解ReentrantReadWriteLock可重入读-写锁

    这篇讲讲ReentrantReadWriteLock可重入读写锁,它不仅是读写锁的实现,而且支持可重入性。 聊聊高并发(十五)实现一个简单的读-写锁(共享-排他锁) 这篇讲了怎样模拟一个读写锁。


    可重入的读写锁的特点是

    1. 当有线程获取读锁时,不同意再有线程获得写锁

    2. 当有线程获得写锁时。不同意其它线程获得读锁和写锁


    这里隐含着几层含义:

     static final int SHARED_SHIFT   = 16;
            static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
            static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
            static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
    
            /** Returns the number of shared holds represented in count  */
            static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
            /** Returns the number of exclusive holds represented in count  */
            static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }

    1. 能够同一时候有多个线程同一时候获得读锁,进入临界区。这时候的读锁的行为和Semaphore信号量是类似的

    2. 因为是可重入的。所以1个线程假设获得了读锁,那么它能够重入这个读锁

    3. 假设1个线程获得了读锁。那么它不能同一时候再获得写锁,这个就是所谓的“锁升级”,读锁升级到写锁可能会造成死锁,所以是不同意的

    4. 假设1个线程获得了写锁,那么不同意其它线程再获得读锁和写锁,可是它自己能够获得读锁,就是所谓的“锁降级”,锁降级是同意的


    关于读写锁的实现还要考虑的几个要点:

    1. 释放锁时的优先级问题。是让写锁先获得还是先让读锁先获得

    2. 是否同意读线程插队

    3. 是否同意写线程插队。由于读写锁一般用在大量读,少量写的情况,假设写线程没有优先级,那么可能造成写线程的饥饿

    4. 锁的升降级问题,通常是同意1个线程的写锁降级为读锁,不同意读锁升级成写锁


    带着问题看看ReentrantReadWriteLock的源代码。 它相同提供了Sync来继承AQS并提供扩展,可是它的Sync相比較Semaphore和CountDownLatch要更加复杂。

    1. 把State状态作为一个读写锁的计数器,包含了重入的次数。

    state是32位的int值,所以把高位16位作为读锁的计数器,低位的16位作为写锁的计数器,并提供了响应的读写这两个计数器的位操作方法。

    计算sharedCount时,採用无符号的移位操作,右移16位就是读锁计数器的值

    写锁直接用EXCLUSIVE_MASK和state做与运算。EXCLUSIVE_MASK的值是00000000000000001111111111111111,相当于计算了低位16位的值

    须要注意计算出来的值包括了重入的次数。

    所以MAX_COUNT限定了最大值是2^17 - 1

     static final int SHARED_SHIFT   = 16;
            static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
            static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
            static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
    
            /** Returns the number of shared holds represented in count  */
            static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
            /** Returns the number of exclusive holds represented in count  */
            static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }

    HoldCount类用来计算1个线程的重入次数,并使用了1个ThreadLocal类型的HoldCounter,能够记录每一个线程的锁的重入次数。 cachedHoldCounter记录了最后1个获取读锁的线程的重入次数。 firstReader指向了第一个获取读锁的线程,firstReaderHoldCounter记录了第一个获取读锁的线程的重入次数

    static final class HoldCounter {
                int count = 0;
                // Use id, not reference, to avoid garbage retention
                final long tid = Thread.currentThread().getId();
            }
    
            /**
             * ThreadLocal subclass. Easiest to explicitly define for sake
             * of deserialization mechanics.
             */
            static final class ThreadLocalHoldCounter
                extends ThreadLocal<HoldCounter> {
                public HoldCounter initialValue() {
                    return new HoldCounter();
                }
            }
    
    /**
             * The hold count of the last thread to successfully acquire
             * readLock. This saves ThreadLocal lookup in the common case
             * where the next thread to release is the last one to
             * acquire. This is non-volatile since it is just used
             * as a heuristic, and would be great for threads to cache.
             *
             * <p>Can outlive the Thread for which it is caching the read
             * hold count, but avoids garbage retention by not retaining a
             * reference to the Thread.
             *
             * <p>Accessed via a benign data race; relies on the memory
             * model's final field and out-of-thin-air guarantees.
             */
            private transient HoldCounter cachedHoldCounter;
    

    Sync提供了两个抽象方法给子类扩展。用来表示读锁和写锁是否应该堵塞等待

    /**
             * Returns true if the current thread, when trying to acquire
             * the read lock, and otherwise eligible to do so, should block
             * because of policy for overtaking other waiting threads.
             */
            abstract boolean readerShouldBlock();
    
            /**
             * Returns true if the current thread, when trying to acquire
             * the write lock, and otherwise eligible to do so, should block
             * because of policy for overtaking other waiting threads.
             */
            abstract boolean writerShouldBlock();

    写锁的tryXXX获取和释放

    1. 写锁释放时,因为没有其它线程获得临界区。它的tryRelease()方法仅仅须要设置状态的值。通过exclusiveCount计算写锁的计数器,假设为0表示释放了写锁,就把exclusiveOwnerThread设置为null.

    2. 写锁的tryAcquire获取时。

        先推断状态是否为0,为0表示没有线程获得锁,就能够直接设置状态。然后把exclusiveOwnerThread设置为当前线程

        假设状态不为0,那表示有几种可能:写锁为0。读锁不为0。写锁不为0。读锁为0。写锁不为0,读锁也不为0。

        所以它先推断写锁是否为0。写锁为0,那么表示读锁肯定不会为0,就失败,

        或者写锁不为0,可是exclusiveOwnerThread不是自己。那么表示已经有其它线程获得了写锁,就失败

        写锁不为0,而且exclusiveOwnerThread是自己。那么肯定表示是写锁的重入的情况,所以设置state状态。返回成功。

       

    protected final boolean tryRelease(int releases) {
                if (!isHeldExclusively())
                    throw new IllegalMonitorStateException();
                int nextc = getState() - releases;
                boolean free = exclusiveCount(nextc) == 0;
                if (free)
                    setExclusiveOwnerThread(null);
                setState(nextc);
                return free;
            }
    
    protected final boolean tryAcquire(int acquires) {
                /*
                 * Walkthrough:
                 * 1. If read count nonzero or write count nonzero
                 *    and owner is a different thread, fail.
                 * 2. If count would saturate, fail. (This can only
                 *    happen if count is already nonzero.)
                 * 3. Otherwise, this thread is eligible for lock if
                 *    it is either a reentrant acquire or
                 *    queue policy allows it. If so, update state
                 *    and set owner.
                 */
                Thread current = Thread.currentThread();
                int c = getState();
                int w = exclusiveCount(c);
                if (c != 0) {
                    // (Note: if c != 0 and w == 0 then shared count != 0)
                    if (w == 0 || current != getExclusiveOwnerThread())
                        return false;
                    if (w + exclusiveCount(acquires) > MAX_COUNT)
                        throw new Error("Maximum lock count exceeded");
                    // Reentrant acquire
                    setState(c + acquires);
                    return true;
                }
                if (writerShouldBlock() ||
                    !compareAndSetState(c, c + acquires))
                    return false;
                setExclusiveOwnerThread(current);
                return true;
            }
    

    读锁的tryXXX获取和释放

    1. 读锁释放时基于共享的方式,改动线程各自的HoldCounter的值。最后採用位操作改动位于state的整体的读锁计数器。tryReleaseShared()之后详细的释放兴许线程的操作由AQS依据队列状态来决定。

    2. 读所获取时先看写锁的计数器,假设写锁已经被获取。而且不是当前线程所获取的。就直接失败返回

        这里会进行一次高速路径获取,尝试获取一次,假设readShouldBlock()返回false,而且CAS操作成功了,意思是能够获得锁,就更新相关读锁计数器

        否则就进行轮询方式的获取fullTryAcquireShared()

        也就是说假设当前没有线程获取写锁,或者是自己获取写锁。就能够获取读锁

        一个线程获取了写锁之后,它还能够获取读锁,也就是所谓的“锁降级”,但这时候其它线程无法获取读锁。在检查到有其它写锁存在时就退出了

    protected final boolean tryReleaseShared(int unused) {
                Thread current = Thread.currentThread();
                if (firstReader == current) {
                    // assert firstReaderHoldCount > 0;
                    if (firstReaderHoldCount == 1)
                        firstReader = null;
                    else
                        firstReaderHoldCount--;
                } else {
                    HoldCounter rh = cachedHoldCounter;
                    if (rh == null || rh.tid != current.getId())
                        rh = readHolds.get();
                    int count = rh.count;
                    if (count <= 1) {
                        readHolds.remove();
                        if (count <= 0)
                            throw unmatchedUnlockException();
                    }
                    --rh.count;
                }
                for (;;) {
                    int c = getState();
                    int nextc = c - SHARED_UNIT;
                    if (compareAndSetState(c, nextc))
                        // Releasing the read lock has no effect on readers,
                        // but it may allow waiting writers to proceed if
                        // both read and write locks are now free.
                        return nextc == 0;
                }
            }
    
    protected final int tryAcquireShared(int unused) {
                /*
                 * Walkthrough:
                 * 1. If write lock held by another thread, fail.
                 * 2. Otherwise, this thread is eligible for
                 *    lock wrt state, so ask if it should block
                 *    because of queue policy. If not, try
                 *    to grant by CASing state and updating count.
                 *    Note that step does not check for reentrant
                 *    acquires, which is postponed to full version
                 *    to avoid having to check hold count in
                 *    the more typical non-reentrant case.
                 * 3. If step 2 fails either because thread
                 *    apparently not eligible or CAS fails or count
                 *    saturated, chain to version with full retry loop.
                 */
                Thread current = Thread.currentThread();
                int c = getState();
                if (exclusiveCount(c) != 0 &&
                    getExclusiveOwnerThread() != current)
                    return -1;
                int r = sharedCount(c);
                if (!readerShouldBlock() &&
                    r < MAX_COUNT &&
                    compareAndSetState(c, c + SHARED_UNIT)) {
                    if (r == 0) {
                        firstReader = current;
                        firstReaderHoldCount = 1;
                    } else if (firstReader == current) {
                        firstReaderHoldCount++;
                    } else {
                        HoldCounter rh = cachedHoldCounter;
                        if (rh == null || rh.tid != current.getId())
                            cachedHoldCounter = rh = readHolds.get();
                        else if (rh.count == 0)
                            readHolds.set(rh);
                        rh.count++;
                    }
                    return 1;
                }
                return fullTryAcquireShared(current);
            }
    
     /**
             * Full version of acquire for reads, that handles CAS misses
             * and reentrant reads not dealt with in tryAcquireShared.
             */
            final int fullTryAcquireShared(Thread current) {
                /*
                 * This code is in part redundant with that in
                 * tryAcquireShared but is simpler overall by not
                 * complicating tryAcquireShared with interactions between
                 * retries and lazily reading hold counts.
                 */
                HoldCounter rh = cachedHoldCounter;
                if (rh == null || rh.tid != current.getId())
                    rh = readHolds.get();
                for (;;) {
                    int c = getState();
                    int w = exclusiveCount(c);
                    if ((w != 0 && getExclusiveOwnerThread() != current) ||
                        ((rh.count | w) == 0 && readerShouldBlock(current)))
                        return -1;
                    if (sharedCount(c) == MAX_COUNT)
                        throw new Error("Maximum lock count exceeded");
                    if (compareAndSetState(c, c + SHARED_UNIT)) {
                        cachedHoldCounter = rh; // cache for release
                        rh.count++;
                        return 1;
                    }
                }
            } 


    tryWriteLock和tryReadLock操作和上面的操作类似,它们是读写锁的tryLock()的实际实现,表示尝试获取一次锁

    1. tryWriteLock方法尝试获得写锁,先推断状态是否为0,为0而且CAS操作成功就表示获得锁。假设状态不为0,就推断写锁计数器的值。假设写锁计数器为0就表示存在读锁,就返回失败。获取写锁不为0,可是不是当前线程所获取的,也返回失败。仅仅有写锁不为0而且是当前线程自己获取的写锁,就是所谓的写锁重入操作。

    CAS成功后就表示获得写锁

    final boolean tryWriteLock() {
                Thread current = Thread.currentThread();
                int c = getState();
                if (c != 0) {
                    int w = exclusiveCount(c);
                    if (w == 0 ||current != getExclusiveOwnerThread())
                        return false;
                    if (w == MAX_COUNT)
                        throw new Error("Maximum lock count exceeded");
                }
                if (!compareAndSetState(c, c + 1))
                    return false;
                setExclusiveOwnerThread(current);
                return true;
            }
    
    final boolean tryReadLock() {
                Thread current = Thread.currentThread();
                for (;;) {
                    int c = getState();
                    if (exclusiveCount(c) != 0 &&
                        getExclusiveOwnerThread() != current)
                        return false;
                    if (sharedCount(c) == MAX_COUNT)
                        throw new Error("Maximum lock count exceeded");
                    if (compareAndSetState(c, c + SHARED_UNIT)) {
                        HoldCounter rh = cachedHoldCounter;
                        if (rh == null || rh.tid != current.getId())
                            cachedHoldCounter = rh = readHolds.get();
                        rh.count++;
                        return true;
                    }
                }
            }
    

    ReentrantReadWriteLock也提供了非公平和公平的两个Sync版本号

    非公平的版本号中

    1. 写锁总是优先获取。不考虑AQS队列中先来的线程

    2. 读锁也不按FIFO队列排队,而是看当前获得锁是否是写锁,假设是写锁,就等待。否则就尝试获得锁

    而公平版本号中

    1. 假设有其它锁存在,获取写锁操作就失败。应该(should)进AQS队列等待

    2. 假设有其它锁存在。获取读锁操作就失败。应该(should)进AQS队列等待

    final static class NonfairSync extends Sync {
            private static final long serialVersionUID = -8159625535654395037L;
            final boolean writerShouldBlock(Thread current) {
                return false; // writers can always barge
            }
            final boolean readerShouldBlock(Thread current) {
                /* As a heuristic to avoid indefinite writer starvation,
                 * block if the thread that momentarily appears to be head
                 * of queue, if one exists, is a waiting writer. This is
                 * only a probablistic effect since a new reader will not
                 * block if there is a waiting writer behind other enabled
                 * readers that have not yet drained from the queue.
                 */
                return apparentlyFirstQueuedIsExclusive();
            }
        }
    
        /**
         * Fair version of Sync
         */
        final static class FairSync extends Sync {
            private static final long serialVersionUID = -2274990926593161451L;
            final boolean writerShouldBlock(Thread current) {
                // only proceed if queue is empty or current thread at head
                return !isFirst(current);
            }
            final boolean readerShouldBlock(Thread current) {
                // only proceed if queue is empty or current thread at head
                return !isFirst(current);
            }
        }

    详细ReadLock和WriteLock的实现就是依赖Sync来实现的,默认是非公平版本号的Sync。

    读锁採用共享默认的AQS,它提供了中断/不可中断的lock操作,tryLock操作,限时的tryLock操作。

    值得注意的时读锁不支持newCondition操作。

     public static class ReadLock implements Lock, java.io.Serializable  {
            private static final long serialVersionUID = -5992448646407690164L;
            private final Sync sync;
    
            protected ReadLock(ReentrantReadWriteLock lock) {
                sync = lock.sync;
            }
    
            
            public void lock() {
                sync.acquireShared(1);
            }
    
            public void lockInterruptibly() throws InterruptedException {
                sync.acquireSharedInterruptibly(1);
            }
    
            public  boolean tryLock() {
                return sync.tryReadLock();
            }
    
            public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException {
                return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
            }
    
            public  void unlock() {
                sync.releaseShared(1);
            }
    
            public Condition newCondition() {
                throw new UnsupportedOperationException();
            }
    

    WriteLock基于独占模式的AQS,它提供了中断/不可中断的lock操作。tryLock操作,限时的tryLock操作

     public static class WriteLock implements Lock, java.io.Serializable  {
            private static final long serialVersionUID = -4992448646407690164L;
    	private final Sync sync;
    
            protected WriteLock(ReentrantReadWriteLock lock) {
                sync = lock.sync;
            }
    
            public void lock() {
                sync.acquire(1);
            }
    
            public void lockInterruptibly() throws InterruptedException {
                sync.acquireInterruptibly(1);
            }
    
            public boolean tryLock( ) {
                return sync.tryWriteLock();
            }
    
            public boolean tryLock(long timeout, TimeUnit unit) throws InterruptedException {
                return sync.tryAcquireNanos(1, unit.toNanos(timeout));
            }
    
            public void unlock() {
                sync.release(1);
            }
    
            public Condition newCondition() {
                return sync.newCondition();
            }
    


    最后再说一下AQS和各种同步器实现的关系,AQS提供了同步队列和条件队列的管理。包含各种情况下的入队出队操作。

    而同步器子类实现了tryAcquire和tryRelease方法来操作状态。来表示什么情况下能够直接获得锁而不须要进入AQS。什么情况下获取锁失败则须要进入AQS队列等待


  • 相关阅读:
    POJ 1273:Drainage Ditches(EK 最大流)
    牛客假日团队赛6 H:Charm Bracelet (01背包)
    牛客假日团队赛6 F:Mud Puddles
    牛客假日团队赛6 E:对牛排序
    牛客假日团队赛6 D:迷路的牛
    牛客假日团队赛6 C:Bookshelf 2
    牛客假日团队赛6 B:Bookshelf
    牛客假日团队赛6 A:Card Stacking (模拟)
    UVA
    (转载)Mysql查找如何判断字段是否包含某个字符串
  • 原文地址:https://www.cnblogs.com/liguangsunls/p/7088090.html
Copyright © 2011-2022 走看看