zoukankan      html  css  js  c++  java
  • 分布式设计《初尝memcached》

          之前听说过高性能的分布式缓存开源工具,但一直没有真正接触过,如今接触的产品中实用到过分布式缓存。所以决定一探到底。memcached是一个优秀的开源的分布式缓存工具。也是眼下比較火热的分布式缓存的解决方式雏形。memcached的服务端产品本身功能简洁,简单易用。可是玩法多种多样。可是其实它是一个“伪分布式”解决方式。它本身并没有实现服务端分布式(服务端的memcached server之间是不能通信的),所谓的分布式都是依靠client来实现,而眼下市面上提供了client分布式实现的开源工具非常多,在这里我主要以Spymemcached这个client实现为基础讲述一些memcached的原理和应用。


    【原理说明】
        之前提到了,memcached产品本身并未实现分布式,所以借助下列两幅网上流行的图片便能够直观的了解memcached的原理以及怎么玩分布式的。

       1、存储(set)
    如果memcached server有node1/node2/node3三个节点,如今应用程序须要存储"tokyo"/"test"这样一对键值对。memcachedclient接收应用程序传来的键值对"tokyo"/"test",通过算法(文章尾部会介绍详细的算法细节)从server列表中选中了node1作为目标存储server。接着发送set指令命令node1运行存储任务。

    图1 存储数据

        2、获取(get)
    如果应用程序如今须要获取键"tokyo"相应的值数据"test",memcachedclient程序接收參数"tokyo",通过相同的算法从server列表中选中node1,接着发送get指令命令node1获取键"tokyo"相应的值数据。

                                                          图2  获取数据

    【使用场景】
        在网上也看过一些前辈描写叙述过一些关于使用场景的描写叙述,我简单总结下大致就下面两点
        1、从memcached设计初衷的角度来看,memcached能够降低站点数据库的开销。对于常常须要读取,而又不常常改变的数据全然能够放到memcached中。

        2、分布式应用之间共享数据。举个样例,登陆系统和商品查询系统是独立部署,而且是集群的。用户登陆了登陆系统之后怎样将登录信息与其它的业务系统(商品查询系统)共享信息,这时就能够使用memcached缓存登录信息。商品查询系统便能够从memcached中获取用户的登陆信息。

    【client源代码分析】

        1、client调用
        以Spymemcachedclient实现为例。以下贴一段client的简单应用代码。下载链接memcached client
    package com.lvmama.memcached;
    import java.net.InetSocketAddress;
    import net.spy.memcached.MemcachedClient;
    public class TestSpymemcached {
     public static void main(String[] args) throws Exception{
      MemcachedClient client = new MemcachedClient(new InetSocketAddress("127.0.0.1", 11211)); //创建连接
      client.set("name", 10, "tony"); //set数据
      Object name = client.get("name"); //get数据
      System.out.println("name:" + name);
     }
    }


       2、余数hash算法
        实现类为ArrayModNodeLocator,将传入的參数k(键)。通过hash算法得出一个整数值,计算下memcached server的个数。拿着參数k的hash值对server节点的个数求余数。余数便是选中的server节点。

      public MemcachedNode getPrimary(String k) {
        return nodes[getServerForKey(k)]; 
      }
    
      private int getServerForKey(String key) {
        int rv = (int) (hashAlg.hash(key) % nodes.length);
        assert rv >= 0 : "Returned negative key for key " + key;
        assert rv < nodes.length : "Invalid server number " + rv + " for key "
            + key;
        return rv;
      }

       3、consistent hash算法
        算法原理见下图
        第一步:将memcachedserver节点的hash值映射到一个0~2的32次方的环形数据结构上,存储方式为k(hash值),v(server节点);
        第二步:将要保存的參数k计算hash值,并映射到环形数据结构中;
        第三步:从參数k的hash值顺时针查找已映射的hash值,第一个hash值相应的server节点便是选中的目标存储server。

                                                     图 3   consistent hash算法

        实现类为KetamaNodeLocator,代码结构比較简单:将要保存的k计算hash值作为參数传入getNodeForKey()方法,从hash值顺时针查找到剩余的环形数据结构tailMap。假设tailMap不为空则取tailMap中第一个已经映射hash值,假设tailMap为空则取整个环形数据结构ketamaNodes的第一个已经映射的hash值(从0開始),取得hash值便能够找到相应的memcachedserver节点。

      public MemcachedNode getPrimary(final String k) {
        MemcachedNode rv = getNodeForKey(hashAlg.hash(k));
        assert rv != null : "Found no node for key " + k;
        return rv;
      }
    
      MemcachedNode getNodeForKey(long hash) {
        final MemcachedNode rv;
        if (!ketamaNodes.containsKey(hash)) {
          // Java 1.6 adds a ceilingKey method, but I'm still stuck in 1.5
          // in a lot of places, so I'm doing this myself.
          SortedMap<Long, MemcachedNode> tailMap = getKetamaNodes().tailMap(hash);
          if (tailMap.isEmpty()) {
            hash = getKetamaNodes().firstKey();
          } else {
            hash = tailMap.firstKey();
          }
        }
        rv = getKetamaNodes().get(hash);
        return rv;
      }

    4、算法优劣比較
    余数hash算法:当server节点存在添加或者降低时,get数据时求得的余数同set数据时求得的余数非常可能就不是同一个值,这时便大大降低了缓存读取的命中率。
    consistent hash算法当server节点存在添加或者降低时,如图3添加了node5,仅仅有node2~node5之间的hash值会受到影响,由原来存储时中的node4变成获取数据时命中的node5。其余hash值都不会受到影响。所以命中率较高。
    并且有些consistent hash算法的实现採用了虚拟节点的思想,使用一般的hash函数会使得server节点的映射分布的不均匀。因此能够为每一个物理server节点分配100~200虚拟映射点。这样便可最大限度的降低节点分布不均的情况发生。


    初尝memcached,如有描写叙述有误,欢迎拍砖哈!兴许会写memcached服务端的内存模型。内存管理,源代码分析等文档,欢迎大家一起探讨!



















        

  • 相关阅读:
    Java 一边读边写即读一行写一行
    mysql-字符类型
    mysql-数字类型:自增主键踩坑
    mysql-死锁
    mysql-查询的成本
    mysql-独立表空间
    mysql-innodb的表空间
    java-semaphore
    java-CyclicBarrier
    java-countDownLatch
  • 原文地址:https://www.cnblogs.com/liguangsunls/p/7209916.html
Copyright © 2011-2022 走看看