zoukankan      html  css  js  c++  java
  • Reservoir Computing论文学习

    Reservoir Computing

    背景:

    1. 神经网络的一种弥补RNN缺点
    2. 神经网 络方法在具体应用过程中也存在一些局限性 .比如前向 结构的神经网络一 般不适 合处理与 时序相 关的机 器学 习问题 , 而在实际应用中出 现的问 题往往 与时 间相关 , 比如预测 、系统辨识 、自适应滤波等等 .递归神经网络虽 然可以用于解决时序相关问题 ,但递归神经网络在实际 应用中存在训练算法过于复杂 、计算量大 、收敛速度慢 以及网络结构难以确定等 问题 .另 外 , 还存 在记忆 渐消 (Fading Memory)问题 , 随时间步骤的加长 , 误差梯度可能消失或者产生畸变 , 所以递归神经网络一般只适合处理短时时序问题 .这些问题都严重阻碍了递归神经网络 在实际问题中的应用 .

    摘抄

    ​ 为了减少训练过程 的计算负 担以 及克服记忆渐消等问题 , Jaeger 于 2001 年提出回声状态网络(Echo State Networks, ESNs)[1] , Maass 于 2002 年提出流体状态机 [2](Liquid State Machines , LSMs) .这两种方法虽然提出的角度不同 , 但其本质都可以认为是对传统的递归神经网 络训练算法的改进 .D Verstraeten 等在文献[ 3] 中以实验 的方式证明了ESNs和LSMs在本质上是一致的,并将其 统一命名为“储备池计算”(Reservoir Computing)

    总结:

    神经网络方法在具体问题上存在问题

    ​ 1: 时序问题虽然可以解决, 但存在算法复杂, 计算量大。

    ​ 2: 收敛速度慢,网络结构难以确定。

    ​ 3: 记忆渐消问题:随时间步骤的加长 , 误差梯度可能消失或者产生畸变。

    RC优势:

    ​ ESNs 最大的优势是简化了网络的训练过程 , 解决了传 统递归神经网络结构难以确定,训练算法过于复杂的问题 , 同时也克服了 递归网络存在的记忆渐消问题

    储备池计算主要理论组成:

    1. 状态回声网络ESNS:
    2. 流体状态机

    ESNS数学模型

    结构表示

    M个输入

    N个处理点

    L个输出

    image-20200210163326282

    状态方程和输出方程

    image-20200210164120606

    总结

    状态变量 W,输入输出对状态变量的连接权矩阵W(in),W(back),三项均为随机产生, 产生后就固定不变;

    W(out)为训练得到;

    f(out)取恒等函数:因为输出层一般线性;

    参考文章片段

    image-20200210163533299

    计算过程

    两个阶段:

    1. 采样阶段
    2. 权值计算阶段

    采样阶段

    摘抄:采样阶段首先任意选定网络的初始状态 , 但是通 常情况下选取网络的初始状态为0 ,即 x(0)=0.训练样 本 ( u (n ) , n = 1 , 2 , ... , M ) 经 过 输 入 连 接 权 W i n , 样 本 数 据 y (n )经 过 反 馈 连 接 权 W b a c k 分 别 被 加 到 储 备 池 , 按 照系统(1)状态方程和输出方程, 依次完成系统状态的计算和相 应输出 y (n )的 计算与收集 .注意每一时刻系统状态 x (n)的计算 , 都 需要将样本数据 y(n)写入到输出单元 .为了计算输出 连接权矩阵 , 需要从某一时刻开始收集(采样)内部状 态变量 .这里假定从 m 时刻开始收集系统状态 , 并以向 量(x1(i),x2(i),...,xN(i))(i=m,m+1, ...,M)为行 构 成 矩 阵 B (M - m + 1 , N ) , 同 时 相 应 的 样 本 数 据 y (n),也被收集,并构成一个列向量 T(M -m +1,1).这里需 要说明的是 :

    (1)如果系统包含有输入到输出 、输出到输出的连 接权 , 那么在收集系统的状态矩阵 B 时 , 还需要 收集相 应的输入和输出部分 ;

    (2 ) 为 了 消 除 任 意 初 始 状 态 对 系 统 动 态 特 性 的 影 响 , 总是从某一时刻后才 开始收 集系统的 状态 .从 该时 刻开始 , 可以认为系统反 映的是 输入 、输出 样本数 据之 间的映射关系 .

    权值计算阶段

    image-20200210170717635

    储备池的优化

    GA;使用进化算法对参数进行优化;

    寻优参数包括三个 :

    1. 储备池规模 Nx ,
    2. 内部连接权矩阵的谱半径 ρ(W),
    3. 内部连接权矩阵的 稀疏度

    缺点:

    遗传算法本身的搜索盲目性导致计算量 过大 , 以及容易陷入局部最优的问题限制了其在储备池参数优化的应用

    基于随机梯度下降法的储备池参数优化

    比经典 ESNs 更为一般的形式 : x(n +1)=(1 -αΔt) x(n) + Δt f (Winu(n +1) + Wx(n) )

    同时也引入了两个全局参数 Δt 和 α, 其中 Δt 是离散化,时间间隔与系统时间常数的比值, α叫做decay rate .

    进而建立了针对全局参数 Δt 和 α的随机梯度下降优化算法 .

    参考文章:

    储备池计算概述彭 宇 1 , 王 建 民 1 , 2 , 彭 喜 元 1

  • 相关阅读:
    Atitit. visual studio vs2003 vs2005 vs2008  VS2010 vs2012 vs2015新特性 新功能.doc
    Atitit. C#.net clr 2.0  4.0新特性
    Atitit. C#.net clr 2.0  4.0新特性
    Atitit.通过null 参数 反射  动态反推方法调用
    Atitit.通过null 参数 反射  动态反推方法调用
    Atitit..net clr il指令集 以及指令分类  与指令详细说明
    Atitit..net clr il指令集 以及指令分类  与指令详细说明
    Atitit.变量的定义 获取 储存 物理结构 基本类型简化 隐式转换 类型推导 与底层原理 attilaxDSL
    Atitit.变量的定义 获取 储存 物理结构 基本类型简化 隐式转换 类型推导 与底层原理 attilaxDSL
    Atitit.跨语言反射api 兼容性提升与增强 java c#。Net  php  js
  • 原文地址:https://www.cnblogs.com/liguo-wang/p/12291720.html
Copyright © 2011-2022 走看看