zoukankan      html  css  js  c++  java
  • matlab——sparse函数和full函数(稀疏矩阵和非稀疏矩阵转换)

    函数功能:生成稀疏矩阵 

    使用方法
    S = sparse(A) 
    将矩阵A转化为稀疏矩阵形式,即矩阵A中任何0元素被去除,非零元素及其下标组成矩阵S。
    如果A本身是稀疏的,sparse(S)返回S。 
    S = sparse(i,j,s,m,n,nzmax) 
    由向量i,j,s生成一个m*n的含有nzmax个非零元素的稀疏矩阵S,并且有 S(i(k),j(k)) = s(k)。
    向量 i,j 和 s 有相同的长度。对应对向量i和j的值,s 中任何零元素将被忽略。
    s 中在 i 和 j 处的重复值将被叠加。 
    注意:如果i或j任意一个大于最大整数值范围,2^31-1, 稀疏矩阵不能被创建。 

    S = sparse(i,j,s,m,n) 
    用 nzmax = length(s) 
    S = sparse(i,j,s) 
    使m = max(i) 和 n = max(j),在s中零元素被移除前计算最大值,[i j s]中其中一行可能为[m n 0]。
    S = sparse(m,n) 
    sparse([],[],[],m,n,0)的缩写,生成一个m*n的所有元素都是0的稀疏矩阵。 


    备注:
    MATLAB中所有内置的算术,逻辑和索引操作都可以应用到稀疏矩阵或混合于稀疏和全矩阵上。
    稀疏矩阵的操作返回稀疏矩阵,全矩阵的操作返回权矩阵。 
    在大多数情况下,稀疏和全矩阵的混合操作返回全矩阵,例外的一种情况是混合操作的结果在结构上稀疏,例如,A.*S至少和矩阵S一样稀疏。 

    应用举例:
    S = sparse(1:n,1:n,1) 生成一个n*n的单位稀疏矩阵,和S = sparse(eye(n,n))有相同的结果,但是如果它的元素大部分是零元素的情况下也会暂时性的生成n*n的全矩阵。

    B = sparse(10000,10000,pi) 可能不是非常有用的,但是它是能运行和允许的,它生成一个10000*10000的仅仅包含一个非零原色的矩阵,不要用full(B),因为这需要800兆储存单元。 

    分析和重组一个稀疏矩阵: 
    [i,j,s] = find(S); 
    [m,n] = size(S); 
    S = sparse(i,j,s,m,n); 

    如果最后一行和最后一列是非零项,有下面: 
    [i,j,s] = find(S); 
    S = sparse(i,j,s);

     

    MATLAB中的full matrix和sparse matrix

    对full matrix和sparse matrix的理解:其实这只是matlab中存储稀疏矩阵的两种方法。

    MATLAB函数sparse简介
    函数功能:
    这个函数与稀疏矩阵有关。
    先说MATLAB中两个概念:full storage organization(对应于full matrix)和sparse storage organization(对应于sparse matrix)。
    而要说明这两个概念,需要介绍稀疏矩阵的概念。
    一般意义上的稀疏矩阵,就是看起来很松散的,也就是说,在这个矩阵中,绝大多数元素是零。例如:
    0, 0, 0, 0;
    0, 0, 1, 0;
    0, 0, 0, 0;
    0, 1, 0, 2;


    计算机存储稀疏矩阵可以有两种思路:
    1.按照存储一个普通矩阵一样存储一个稀疏矩阵,比如上面这个稀疏矩阵中总共十六个元素(三个非零元素),把这些元素全部放入存储空间中。这种存储方式,在matlab就叫做full storage organization。
    2.只存储非零元素,那么怎么存储呢?
    (4,2)        1
    (2,3)        1
    (4,4)        2
    看出来了吧, 只存储非零元素在稀疏矩阵中的位置和值。比如,上面所举的这个例子,值为2的项在第4行第4列,那么我们就只需要存储这一非零项在稀疏矩阵中的“坐标”(4,4)和这一非零项的值2。在MATLAB中,这种存储方式就叫做sparse storage organization。虽然,这样要多存储一组坐标,但如果稀疏矩阵中非零元素非常少,以这种存储方式存储稀疏矩阵反而节省了内存空间。


    为什么matlab中会同时存在这两种存储方式呢?
    第一种方式, 更加直观,进行矩阵运算时(比如稀疏矩阵的乘法),算法简单易实现。
    而第二种方式,虽然有时可以节省存储数据时占用的存储空间,但进行运算时需要专门的算法实现(使用C语言编写过稀疏矩阵乘法的同学应该能体会到)。


    sparse
    函数的功能就是把以第一种存储形式存储的稀疏矩阵转换成第二种形式存储(其实这个函数更重要的功能是构建稀疏矩阵,这里不再讨论)。对应的函数为full,即把以第二种方式存储的稀疏矩阵转换成第一种方式存储。
    在MATLAB中,存储一个稀疏矩阵有两种方法。
    语法格式:
    S = sparse(A)
    S = sparse(i,j,s,m,n,nzmax)
    S = sparse(i,j,s,m,n)
    S = sparse(i,j,s)
    S = sparse(m,n)
    各种语法格式详见MATLAB帮助文档。
    相关函数:full、issparse


    程序示例
    >> A = [0, 0, 0, 0;
    0, 0, 1, 0;
    0, 0, 0, 0;
    0, 1, 0, 2];
    >> sparse(A)
    ans =
       (4,2)        1
       (2,3)        1
       (4,4)        2

    当然sparse函数还可以通过一定规则构造稀疏矩阵,这里就不多说了。

  • 相关阅读:
    Web Api跨域访问配置及调用示例
    EasyUI datagrid 日期时间格式化
    bootstrap-table组合表头
    Tomcat version 7.0 only supports J2EE 1.2, 1.3, 1.4, and Java EE 5 and 6 Web mod
    Java 开发环境配置
    一台电脑上配置多个tomcat
    使用plsql Developer 连接远程服务器
    阿里云初识
    算法入门———冒泡排序
    算法入门———递归
  • 原文地址:https://www.cnblogs.com/lihuidashen/p/3435883.html
Copyright © 2011-2022 走看看