众所周知,萌萌哒六花不擅长数学,所以勇太给了她一些数学问题做练习,其中有一道是这样的:
勇太有一个$n times m$的点阵,他想要从这$n times m$个点中选出三个点 ${A,B,C}$,满足:
- 三角形$ABC$面积不为$0$且其内部不存在整点。
- 边$AB$,$BC$,$CA$上不存在除了端点以外的整点。
现在勇太想要知道有多少种不同的选取方案满足条件。
当然,这个问题对于萌萌哒六花来说实在是太难了,你可以帮帮她吗?
注意${A,B,C}$与${B,A,C}$视为同一种方案。
$n,m leqslant 5 times 10^9$。
题解
一道比较有趣的数论题。看范围应该能猜到是杜教筛一类的东西,但是推不出第一步的式子啊= =
首先考虑题目这个奇怪的条件,其实由皮克定理,我们可以得到,这个三角形的面积为$frac{1}{2}$,也就是说,题目要求的就是面积为$frac{1}{2}$的三角形的个数。
考虑这种三角形大概长什么样子,然后你会发现它只能长成这样:
考虑一个$a times b$的矩形,以这个矩形的两个相对的点为其中两个顶点的三角形的个数。设$vec{BE}$的坐标为$(x,y)$那么这个三角形的面积就可以表示为:
$$S=frac{1}{2}|vec{BE} times vec{BD}|=frac{1}{2}|ay-bx|$$
令$S=frac{1}{2}$,则有$ay-bx=pm 1$。
由裴蜀原理,这个方程仅在$gcd(a,b)=1$时有解,且每个方程恰好有一组解。再把对角线换一下,于是当$gcd(a,b)=1$时,会有$4$个这样的三角形。
然后这个奇怪的题,终于被我们化成了这样的式子:
$$sum_{i=1}^{n}sum_{j=1}^{m}[gcd(i,j)=1]4(n-i)(m-j)$$
莫比乌斯反演一下,就变成这样了:
$$4 sum_{x=1}^{min(n,m)} mu(x) sum_{i=1}^{lfloor frac{n}{x} rfloor} sum_{j=1}^{lfloor frac{m}{x} rfloor} nm - mix - njx + ijx^2$$
令$S(n)=sum_{i=1}^{n}i=frac{n(n+1)}{2}$把式子再化简一下,就变成:
$$4 sum_{x=1}^{min(n,m)} mu(x)(lfloor frac{n}{x} rfloor lfloor frac{m}{x} rfloor nm-x lfloor frac{m}{x} rfloor S(lfloor frac{n}{x} rfloor)-x lfloor frac{n}{x} rfloor S(lfloor frac{m}{x} rfloor)+x^2 S(lfloor frac{m}{x} rfloor) S(lfloor frac{n}{x} rfloor))$$
终于,这个式子的求法很显然了,可以直接枚举,$O(n)$计算。然而这还是过不了,得加上杜教筛。
这里杜教筛要筛的东西还挺多的,一个是$sum_{i=1}^{n}mu(i)$,一个是$sum_{i=1}^{n}mu(i)i$,还要筛出$sum_{i=1}^{n}mu(i)i^2$。
关于这三个函数的筛法,我都在这里讲一下:
关于杜教筛,我们知道有个这样的式子:
$$L(n)-g(1)F(n)=sum_{i=2}^n g(i) F(lfloorfrac{n}{i}rfloor)$$
其中$f*g=l$。
对于$sum_{i=1}^{n}mu(i)$,我们是令$g=1$,利用$sum_{d|n}mu(d)=[n=1]$,于是使得$L(n)=1$,从而完成计算;
对于$sum_{i=1}^{n}mu(i)i$,我们则令$g(i)=i$,那么$sum_{d|n}mu(d)d times frac{n}{d}=1$,从而$L(n)=1$,从而实现了杜教筛;
对于$sum_{i=1}^{n}mu(i)i^2$,类似地,我们令$g(i)=i^2$,那么$sum_{d|n}mu(d)d^2 times (frac{n}{d})^2=1$,从而$L(n)=1$,从而也实现了杜教筛;
由于$5 times 10^9 times 5 times 10^9=2.5 times 10^{19}$超过了long long
的范围,因此取模变得很恶心,时常要记得取模。
偷懒用了std::map
,所以时间复杂度$O(n^{frac{2}{3}}logn)$。
代码
|
|