斐蜀定理
内容
斐蜀定理又叫贝祖定理,它的内容是这样的:
若$a,bin N$,那么对于任意x,y,方程$ax+by=gcd(a,b)*k(kin N)$一定有解,且一定有一组解使$ax+by=gcd(a,b)$
推论
a,b互素的充要条件是方程$ax+by=1$有整数解。
证明
令$d=gcd(a,b)$,则$d|a,d|b$
那么就能得到$d|(ax+by)$
于是我们设s为$ax+by$能得到的最小正整数值,则$d|s$。
令$q=adiv s$(此处为整除),$r=amod s$,则$a=qs+r$。
->$r=a-qs$
->$r=a-q(ax+by)$
->$r=(1-qx)a+b(-qy)$
则通过观察可以发现r也是一个关于a,b的线性组合,其中$x=(1-qx),y=(-qy)$
因为$0leq r< s$,又因为s是a,b线性组合所能得到的最小自然数,那么r既然比s小,r只能等于0.
所以既然余数为0就说明$s|a$,同理可证明$s|b$,所以能得到$s|(ax+by)$。
于是就有$s|d$,又因为上文提到了$d|s$,所以得到$s==d$
由于s是$ax+by$所得到任意值的集合中的最小者,又因为s=d,d=gcd(a,b)所以得到
$ax+by=gcd(a,b)$
证明完毕
拓展欧几里得算法
内容
所谓拓展欧几里得算法,那一定是跟欧几里得算法有一定关系的,拓展欧几里得算法所研究的问题是,讨论如何求满足斐蜀定理的一组方程的解。
方法
下面直接给出代码
1 |
|
证明
假设a>b:
Ⅰ.当b=0时,gcd(a,b)=a,于是方程就变成了$ax=gcd(a,b)=a$,易知x=1,那么当x=1,y=0,时就得到了方程的一组解。
Ⅱ.设两方程:
$ax_1+by_1=gcd(a,b)$
$bx_2+(amod b)y_x=gcd(b,amod b)$
有欧几里得算法得$gcd(a,b)=gcd(b,amod b)$ 于是得到:
$ax_1+by_1=bx_2+(amod b)y_2$.
其中$amod b=a-adiv btimes b$(此处为整除),带入原式得到:
$ax_1+by_1=bx_2+ay_2-adiv btimes y_2times b$
通过移项得到:
$ax_1+by_1=ay_2+b(x_2-adiv btimes y_2)$
则可以得到:
$x_1=y_2,y_1=(x_2-adiv btimes y_2)$
于是就得到了x,y的递推关系,求接的过程是递归的,从最后一个解$x=1,y=0$,就能推导到第一个式子的一个解。证毕。