zoukankan      html  css  js  c++  java
  • K-NN算法 学习总结

    1. K-NN算法简介

     K-NN算法 ( K Nearest Neighbor, K近邻算法 ), 是机器学习中的一个经典算法, 比较简单且容易理解. K-NN算法通过计算新数据与训练数据特征值之间的距离, 然后选取 K (K>=1) 个距离最近的邻居进行分类或者回归. 如果K = 1 , 那么新数据将被分配给其近邻的类.

      K-NN算法是一种有监督学习, K-NN算法用于分类时, 每个训练数据都有明确的label, 也可以明确的判断出新数据的label, K-NN用于回归时也会根据邻居的值预测出一个明确的值. 

    2. K-NN算法的过程

    1. 选择一种距离计算方式, 通过数据所有的特征计算新数据与已知类别数据集中数据点的距离;
    2. 按照距离递增次序进行排序, 选取与当前距离最小的 k 个点;
    3. 对于离散分类, 返回 k 个点出现频率最多的类别作为预测分类; 对于回归, 返回 k 个点的加权值作为预测值.

    3. K-NN算法的关键

      K-NN 算法的理论和过程都很简单, 但有几个关键点需要特别注意.

    3.1 数据特征的量化

      如果数据特征中存在非数值型的特征, 则需要采取手段将其量化为数值. 举个例子,若样本特征中包含颜色(红黑蓝)特征, 由于颜色之间没有距离可言, 所以可以通过将颜色转换为灰度值来实现距离计算. 另外, 一般样本有多个参数, 每个参数都有自己的定义域和取值范围, 因而它们对距离计算的影响也就不一样. 比如取值范围较大的参数影响力会盖过取值较小的参数. 所以, 为了公平起见, 样本参数必须做一些scale处理, 最简单的方式就是将所有特征的数值都采取归一化处理.

    3.2 计算距离的方法

      距离的定义有很多种, 如欧氏距离, 余弦距离, 汉明距离, 曼哈顿距离等. 通常情况下,对于连续变量, 选取欧氏距离作为距离度量; 对于文本分类这种非连续变量, 选取汉明距离来作为度量. 通常如果运用一些特殊的算法来作为计算度量, 可以显著提高 K 近邻算法的分类精度, 如运用大边缘最近邻法或者近邻成分分析法. 

    3.3 确定 K 值

      K是一个自定义的常数, 它的值会直接影响最后的预测结果. 一种选择K值的方法是, 使用 cross-validate(交叉验证)误差统计选择法交叉验证就是把数据样本的一部分作为训练样本, 另一部分作为测试样本. 比如选择95%作为训练样本, 剩下的用作测试样本, 通过训练数据集训练出一个机器学习模型, 然后利用测试数据测试其误差率. cross-validate(交叉验证)误差统计选择法就是比较不同K值时的交叉验证平均误差率, 选择误差率最小的那个K值. 例如选择K=1, 2, 3, ... ,  对每个K = i 做100次交叉验证, 计算出平均误差, 通过比较选出误差最小的那个.

    4. K-NN分类与K-NN回归

    4.1 K-NN分类

      如果训练样本是多维特征空间向量, 其中每个训练样本都有一个类别标签(喜欢或者不喜欢、保留或者删除). 分类算法常采用 " 多数表决 " 决定, 即k个邻居中出现次数最多的那个类作为预测类. “ 多数表决 ” 分类的一个缺点是出现频率较多的样本将会主导测试点的预测结果, 因为它们出现在测试点的K邻域的几率较大, 而测试点的属性又是通过K领域内的样本计算出来的. 解决这个缺点的方法之一是在进行分类时将K个邻居到测试点的距离考虑进去. 例如, 样本到测试点距离为d, 则选1/d为该邻居的权重(也就是得到了该邻居所属类的权重), 然后统计出k个邻居所有类标签的权重和, 值最大的那个就是新数据点的预测类标签。
      举例,K=5, 计算出新数据点到最近的五个邻居的举例是(1, 3, 3, 4, 5), 五个邻居的类标签是(yes, no, no, yes, no). 如果按照多数表决法, 则新数据点类别为no(3个no, 2个yes); 若考虑距离权重, 则类别为yes(no:2/3+1/5, yes:1+1/4).

    4.2 K-NN回归

      数据点的类别标签是连续值时应用K-NN算法就是回归, 与K-NN分类算法过程相同, 区别在于对K个邻居的处理上. K-NN回归是取K个邻居类标签值得加权作为新数据点的预测值. 加权方法有: K个近邻的属性值的平均值(最差), 1/d为权重(有效的衡量邻居的权重, 使较近邻居的权重比较远邻居的权重大), 高斯函数(或者其他适当的减函数). 

    5. 总结

      K-近邻算法是分类数据最简单最有效的算法, 其学习基于实例, 使用算法时我们必须有接近实际数据的训练样本数据. K-近邻算法必须保存全部数据集, 如果训练数据集的很大, 则会占用大量的存储空间. 此外, 由于必须对数据集中的每个数据计算距离值, 实际使用时可能非常耗时. k-近邻算法的另一个缺陷是它无法给出任何数据的基础结构信息, 因此我们也无法知晓平均实例样本和典型实例样本具有什么特征. 

    参考资料:

    K近邻(KNN)算法: http://blog.csdn.net/suipingsp/article/details/41964713

    K Nearest Neighbor 算法: http://coolshell.cn/articles/8052.html

  • 相关阅读:
    Android 2.2 r1 API 中文文档系列(11) —— RadioButton
    Android API 中文 (15) —— GridView
    Android 中文 API (16) —— AnalogClock
    Android2.2 API 中文文档系列(7) —— ImageButton
    Android2.2 API 中文文档系列(6) —— ImageView
    Android 2.2 r1 API 中文文档系列(12) —— Button
    Android2.2 API 中文文档系列(8) —— QuickContactBadge
    [Android1.5]TextView跑马灯效果
    [Android1.5]ActivityManager: [1] Killed am start n
    Android API 中文(14) —— ViewStub
  • 原文地址:https://www.cnblogs.com/lijingchn/p/5398483.html
Copyright © 2011-2022 走看看