zoukankan      html  css  js  c++  java
  • Volley 源码分析

    Volley 源码分析

    图片分析


    要说源码分析,我们得先看一下官方的配图: ![图片](http://ww3.sinaimg.cn/large/a174c633gw1esc7dcevc8j20f60e1q56.jpg)

    从这张图中我们可以了解到 volley 工作流程:

    1.请求加入优先队列
    2.从缓存调度器中查看是否存在该请求,如果有(没有进入第三步)直接缓存中读取并解析数据,最后分发到 UI 线程(主线程)。
    3.从网络中获取数据(如果设置可以缓存,则写入缓存)并解析数据,最后分发到 UI 线程(主线程)。

    从图中,我们还可以看到 volley 的工作其实就是三个线程之间的数据传递 主线程 缓存线程 网络线程。


    ## 代码分析

    既然是源码分析,当然是得从源码开始啦(怎么下载源码我就不说了!不会的自行谷歌)!那我们从哪段源码开始嘞?我们就从我们使用 volley 框架的第一句代码开始。

    Volley.newRequestQueue(context) 是我们使用 volley 框架的第一句代码!这句代码是用创建个 RequestQueue (请求队列。对,这个就是 volley 工作流程中的第一步的铺垫。这样请求才能有容器装啊!)。那好,我们现在就来看一下 newRequestQueue(context) 这个静态方法:

    public static RequestQueue newRequestQueue(Context context) {
        return newRequestQueue(context, null);
    }
    public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
        File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);
    
        String userAgent = "volley/0";
        try {
            String packageName = context.getPackageName();
            PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
            userAgent = packageName + "/" + info.versionCode;
        } catch (NameNotFoundException e) {
        }
    
        if (stack == null) {
            if (Build.VERSION.SDK_INT >= 9) {
                stack = new HurlStack();
            } else {
                // Prior to Gingerbread, HttpUrlConnection was unreliable.
                // See: http://android-developers.blogspot.com/2011/09/androids-http-clients.html
                stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
            }
        }
    
        Network network = new BasicNetwork(stack);
    
        RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
        queue.start();
    
        return queue;
    }
    

    从代码中可以看出,我们使用的是 newRequestQueue(Context context, HttpStack stack) 这个函数的重载方法!
    我简要对这个方法说明下:在系统版本大于等于 9 的时候,我们创建 HurlStack(就是 HttpUrlConnection),在小于 9 的时候我们创建 HttpClientStack(就是 HttpClient) 至于为啥要要这么做。那就是 HttpUrlConnection 的性能要比HttpClient 的好。当然这里我还可以使用另外第三发的 HTTP 库 。比如说 okhttp 。这里我们只要调用 newRequestQueue(Context context, HttpStack stack) 这个方法就行了!当然 要对 okhttp 做简单的封装了!前提是要继承 HttpStack 这个接口啊!

    接下来 我们直接看这句代码:RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network); 这就是我们要创建的请求队列啦!看 RequestQueue 这个类:

    我们先看构造函数(直接看最复杂的!哈哈)

    public RequestQueue(Cache cache, Network network, int threadPoolSize,
            ResponseDelivery delivery) {
        mCache = cache;
        mNetwork = network;
        mDispatchers = new NetworkDispatcher[threadPoolSize];
        mDelivery = delivery;
    }
    

    可以看到,需要传入 缓存 ,网络执行器,线程池大小,返回结果分发器。这四个参数!接着 我们再来看一下 queue.start() 这句代码的含义!还是一样先看代码:

     public void start() {
        stop();  // Make sure any currently running dispatchers are stopped.
        // Create the cache dispatcher and start it.
        mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
        mCacheDispatcher.start();
    
        // Create network dispatchers (and corresponding threads) up to the pool size.
        for (int i = 0; i < mDispatchers.length; i++) {
            NetworkDispatcher networkDispatcher = new  (mNetworkQueue, mNetwork,
                    mCache, mDelivery);
            mDispatchers[i] = networkDispatcher;
            networkDispatcher.start();
        }
    }
    

    先来解释下这这段代码:先停止当前正在运行的所有的线程!接着 初始化 CacheDispatcher(缓存调度器) 并启动他!接着就是启动 NetworkDispatcher(网络调度器) 这有多个。他的个数全靠 threadPoolSize 这个变量控制(默认大小是4)。这样一来。请求队列就是初始化好了!就等待任务加入了啦!!那我们就趁热打铁,直接看加入任务队列的源码:

     public Request   {    
        request.setRequestQueue(this);
        synchronized (mCurrentRequests) {
            mCurrentRequests.add(request);
        }
        request.setSequence(getSequenceNumber());
        request.addMarker("add-to-queue");
        if (!request.shouldCache()) {
            mNetworkQueue.add(request);
            return request;
        }
        synchronized (mWaitingRequests) {
            String cacheKey = request.getCacheKey();
            if (mWaitingRequests.containsKey(cacheKey)) {
                // There is already a request in flight. Queue up.
                Queue<Request> stagedRequests = mWaitingRequests.get(cacheKey);
                if (stagedRequests == null) {
                    stagedRequests = new LinkedList<Request>();
                }
                stagedRequests.add(request);
                mWaitingRequests.put(cacheKey, stagedRequests);
                if (VolleyLog.DEBUG) {
                    VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);
                }
            } else {
                mWaitingRequests.put(cacheKey, null);
                mCacheQueue.add(request);
            }
            return request;
        }
    }
    

    依旧是来解读这段代码,在解读这该段代码的时候,我们先来弄清楚其中三个变量的含义:

    //当前 RequestQueue 中所有的请求队列
    private final Set<Request> mCurrentRequests = new HashSet<Request>();
    //缓存队列
    private final PriorityBlockingQueue<Request> mCacheQueue =
        new PriorityBlockingQueue<Request>();
    //网络队列 正在进入的
    private final PriorityBlockingQueue<Request> mNetworkQueue =
        new PriorityBlockingQueue<Request>();
    

    含义如注释!那么我们接着看 add(Request request) 这个方法!首先还是先把任务加入 当前队列。之后request.shouldCache() 判断该任务需要被缓存。不需要的话 直接进入 网络队列!否则的话就加入缓存队列!!

    分析完了怎么加入队列之后,我们要来分析下两外两个类了 CacheDispatcher 和 NetworkDispatcher 这里先说下这两个类的共同点:那就是都继承了 Thread 类!也就说他们都是线程类!可以被执行。这也就解释了 RequestQueue 类中的start() 方法中 mCacheDispatcher.start() 和 networkDispatcher.start() 这两句代码!

    那么我们先来看一下 CacheDispatcher 这个类!我们直接该类最核心的方法 run() 方法!

     public void run() {
        if (DEBUG) VolleyLog.v("start new dispatcher");
        Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
        mCache.initialize();
        while (true) {
            try {
                // Get a request from the cache triage queue, blocking until
                // at least one is available.
                final Request request = mCacheQueue.take();
                request.addMarker("cache-queue-take");
    
                // If the request has been canceled, don't bother dispatching it.
                if (request.isCanceled()) {
                    request.finish("cache-discard-canceled");
                    continue;
                }
    
                // Attempt to retrieve this item from cache.
                Cache.Entry entry = mCache.get(request.getCacheKey());
                if (entry == null) {
                    request.addMarker("cache-miss");
                    // Cache miss; send off to the network dispatcher.
                    mNetworkQueue.put(request);
                    continue;
                }
    
                // If it is completely expired, just send it to the network.
                if (entry.isExpired()) {
                    request.addMarker("cache-hit-expired");
                    request.setCacheEntry(entry);
                    mNetworkQueue.put(request);
                    continue;
                }
                // We have a cache hit; parse its data for delivery back to the request.
                request.addMarker("cache-hit");
                Response<?> response = request.parseNetworkResponse(
                        new NetworkResponse(entry.data, entry.responseHeaders));
                request.addMarker("cache-hit-parsed");
                if (!entry.refreshNeeded()) {
                    // Completely unexpired cache hit. Just deliver the response.
                    mDelivery.postResponse(request, response);
                } else {
                    // Soft-expired cache hit. We can deliver the cached response,
                    // but we need to also send the request to the network for
                    // refreshing.
                    request.addMarker("cache-hit-refresh-needed");
                    request.setCacheEntry(entry);
    
                    // Mark the response as intermediate.
                    response.intermediate = true;
    
                    // Post the intermediate response back to the user and have
                    // the delivery then forward the request along to the network.
                    mDelivery.postResponse(request, response, new Runnable() {
                        @Override
                        public void run() {
                            try {
                                mNetworkQueue.put(request);
                            } catch (InterruptedException e) {
                                // Not much we can do about this.
                            }
                        }
                    });
                }
    
            } catch (InterruptedException e) {
                // We may have been interrupted because it was time to quit.
                if (mQuit) {
                    return;
                }
                continue;
            }
        }
    }
    

    这段代码中有句代码非常抢眼,没错!那就是 while(true) 这句话了!有的童鞋可能已经想到了:这是个死循环(这不废话!),另外肯定是在不同的从某个队列中取/存数据。没错,就是这样啊!其实很简单!我们接着细说:首先从缓存队列中去除队列,接着判断该请求是否已经取消 if (request.isCanceled()) 如果已经取消的话,就是不走下面的代码!继续从头循环!反之,从缓存中读取数据,如果没有的话就把该队列加入网络请求队列。如果有的但是缓存已经过期的话 也是加入网络请求队列( if (entry == null) 和 if (entry.isExpired()) 这两个 if 下的语句就是处理上面两个功能的)。如果以上两个条件都不满足的话!就直接 request.parseNetworkResponse(new NetworkResponse(entry.data, entry.responseHeaders)) 解析缓存中的数据进行回调了!

    下面我们看 NetworkDispatcher 类的代码,同样的我们直接看 核心代码:

    public void run() {
        Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
        Request request;
        while (true) {
            try {
                // Take a request from the queue.
                request = mQueue.take();
            } catch (InterruptedException e) {
                // We may have been interrupted because it was time to quit.
                if (mQuit) {
                    return;
                }
                continue;
            }
    
            try {
                request.addMarker("network-queue-take");
    
                // If the request was cancelled already, do not perform the
                // network request.
                if (request.isCanceled()) {
                    request.finish("network-discard-cancelled");
                    continue;
                }
    
                // Tag the request (if API >= 14)
                if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.ICE_CREAM_SANDWICH) {
                    TrafficStats.setThreadStatsTag(request.getTrafficStatsTag());
                }
    
                // Perform the network request.
                NetworkResponse networkResponse = mNetwork.performRequest(request);
                request.addMarker("network-http-complete");
    
                // If the server returned 304 AND we delivered a response already,
                // we're done -- don't deliver a second identical response.
                if (networkResponse.notModified && request.hasHadResponseDelivered()) {
                    request.finish("not-modified");
                    continue;
                }
    
                // Parse the response here on the worker thread.
                Response<?> response = request.parseNetworkResponse(networkResponse);
                request.addMarker("network-parse-complete");
    
                // Write to cache if applicable.
                // TODO: Only update cache metadata instead of entire record for 304s.
                if (request.shouldCache() && response.cacheEntry != null) {
                    mCache.put(request.getCacheKey(), response.cacheEntry);
                    request.addMarker("network-cache-written");
                }
    
                // Post the response back.
                request.markDelivered();
                mDelivery.postResponse(request, response);
            } catch (VolleyError volleyError) {
                parseAndDeliverNetworkError(request, volleyError);
            } catch (Exception e) {
                VolleyLog.e(e, "Unhandled exception %s", e.toString());
                mDelivery.postError(request, new VolleyError(e));
            }
        }
    }
    

    同样的是,先从网络请求队列中取出任务,接着在判断是否要取消,如果要则跳过下面的代码,重新取任务!调用 NetworkResponse networkResponse = mNetwork.performRequest(request); 这句代码,获取 网络返回结果!接着,代码和 CacheDispatcher 中差不多!唯一的区别就是:如果当前的请求需要加入缓存,则加入缓存!细心的同学可能发现了,CacheDispatcher 和 NetworkDispatcher 这两个类中有句相同的代码 Response<?> response = request.parseNetworkResponse(networkResponse); 就是这句!核心的就是parseNetworkResponse(networkResponse) 这个函数的实现我在上一篇 Volley 的使用以及自定义Request 中已经说过了!是有我们实现的!

    这里的我们还得在注意一个类:那就是 BasicNetwork !其实这个类没有什么可以细说的!他就是请求网络接着返回结果!我这里也把核心代码上一下:

      public NetworkResponse performRequest(Request<?> request) throws VolleyError {
        long requestStart = SystemClock.elapsedRealtime();
        while (true) {
            HttpResponse httpResponse = null;
            byte[] responseContents = null;
            Map<String, String> responseHeaders = new HashMap<String, String>();
            try {
                // Gather headers.
                Map<String, String> headers = new HashMap<String, String>();
                addCacheHeaders(headers, request.getCacheEntry());
                httpResponse = mHttpStack.performRequest(request, headers);
                StatusLine statusLine = httpResponse.getStatusLine();
                int statusCode = statusLine.getStatusCode();
    
                responseHeaders = convertHeaders(httpResponse.getAllHeaders());
                // Handle cache validation.
                if (statusCode == HttpStatus.SC_NOT_MODIFIED) {
                    return new NetworkResponse(HttpStatus.SC_NOT_MODIFIED,
                            request.getCacheEntry().data, responseHeaders, true);
                }
    
                responseContents = entityToBytes(httpResponse.getEntity());
                // if the request is slow, log it.
                long requestLifetime = SystemClock.elapsedRealtime() - requestStart;
                logSlowRequests(requestLifetime, request, responseContents, statusLine);
    
                if (statusCode != HttpStatus.SC_OK && statusCode != HttpStatus.SC_NO_CONTENT) {
                    throw new IOException();
                }
                return new NetworkResponse(statusCode, responseContents, responseHeaders, false);
            } catch (SocketTimeoutException e) {
                attemptRetryOnException("socket", request, new TimeoutError());
            } catch (ConnectTimeoutException e) {
                attemptRetryOnException("connection", request, new TimeoutError());
            } catch (MalformedURLException e) {
                throw new RuntimeException("Bad URL " + request.getUrl(), e);
            } catch (IOException e) {
                int statusCode = 0;
                NetworkResponse networkResponse = null;
                if (httpResponse != null) {
                    statusCode = httpResponse.getStatusLine().getStatusCode();
                } else {
                    throw new NoConnectionError(e);
                }
                VolleyLog.e("Unexpected response code %d for %s", statusCode, request.getUrl());
                if (responseContents != null) {
                    networkResponse = new NetworkResponse(statusCode, responseContents,
                            responseHeaders, false);
                    if (statusCode == HttpStatus.SC_UNAUTHORIZED ||
                            statusCode == HttpStatus.SC_FORBIDDEN) {
                        attemptRetryOnException("auth",
                                request, new AuthFailureError(networkResponse));
                    } else {
                        // TODO: Only throw ServerError for 5xx status codes.
                        throw new ServerError(networkResponse);
                    }
                } else {
                    throw new NetworkError(networkResponse);
                }
            }
        }
    }
    

    这个类 我就真的不细讲啦!!

    上面已经说了,在解析玩数据之后其实就分发数据了!让用户能够在 UI线程中调用了!现在我们就来看一下这个分发类:ExecutorDelivery。 我们还是先看这个类的构造函数:

     public  (final Handler handler) {
        // Make an Executor that just wraps the handler.
        mResponsePoster = new Executor() {
            @Override
            public void execute(Runnable command) {
                handler.post(command);
            }
        };
    }
    

    从代码中我们可以看到,我们需要传一个Handller进入,此时我们在回想一下这个类在 RequestQueue 类中是怎么初始化的?

     public RequestQueue(Cache cache, Network network, int threadPoolSize) {
        this(cache, network, threadPoolSize,
                new ExecutorDelivery(new Handler(Looper.getMainLooper())));
    }
    

    没错!大家可以看到,是传入了一个主线中的handler!

    当在 CacheDispatcher 和 NetworkDispatcher 这两个类中调用了 mDelivery.postResponse(request, response); 这个方法的时,我们来看一下 ExecutorDelivery 这个类都做了什么!

    public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {
        request.markDelivered();
        request.addMarker("post-response");
        mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));
    }
    

    我们直接执行了了个Runnable-->ResponseDeliveryRunnable。那他又做了什么呢?

     public void run() {
            // If this request has canceled, finish it and don't deliver.
            if (mRequest.isCanceled()) {
                mRequest.finish("canceled-at-delivery");
                return;
            }
    
            // Deliver a normal response or error, depending.
            if (mResponse.isSuccess()) {
                mRequest.deliverResponse(mResponse.result);
            } else {
                mRequest.deliverError(mResponse.error);
            }
    
            // If this is an intermediate response, add a marker, otherwise we're done
            // and the request can be finished.
            if (mResponse.intermediate) {
                mRequest.addMarker("intermediate-response");
            } else {
                mRequest.finish("done");
            }
    
            // If we have been provided a post-delivery runnable, run it.
            if (mRunnable != null) {
                mRunnable.run();
            }
       }
    

    我们看最直接的这句代码 mRequest.deliverResponse(mResponse.result); 我们调用了 Request的中的一个方法(这个方法,依然是要我们自己实现!)。接着,我们在看 ExecutorDelivery 的构造函数时,我们就会豁然开朗!数据终于到了 UI线程了!

    至此 volley 框架的整体流程分析完毕!!!!
    还在说几句:volley 框架的架构设计非常优美!扩展性极高!这个大概得益于 volley 面向接口的设计方案吧!面向接口的架构设计 也是我不断努力的方向!!!!
  • 相关阅读:
    PAT 1035. 插入与归并(25)
    PAT 1034. 有理数四则运算(20)
    PAT 1033. 旧键盘打字(20)
    PAT 1032. 挖掘机技术哪家强(20)
    PAT 1031. 查验身份证(15)
    PAT 1030. 完美数列(25)
    PAT 1029. 旧键盘(20)
    PAT 1028. 人口普查(20)
    PAT 1027. 打印沙漏(20)
    PAT 1026. 程序运行时间(15)
  • 原文地址:https://www.cnblogs.com/likeandroid/p/4521185.html
Copyright © 2011-2022 走看看